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Getting Started

• “Medical Imaging Toolbox Product Description” on page 1-2
• “Read, Process, and Write 3-D Medical Images” on page 1-3
• “Get Started with Medical Image Labeler” on page 1-9
• “Medical Image Coordinate Systems” on page 1-16
• “Introduction to Medical Imaging” on page 1-19
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Medical Imaging Toolbox Product Description
Visualize, register, segment, and label 2D and 3D medical images

Medical Imaging Toolbox provides apps, functions, and workflows for designing and testing
diagnostic imaging applications. You can perform 3D rendering and visualization, multimodal
registration, and segmentation and labeling of radiology images. The toolbox also lets you train
predefined deep learning networks (with Deep Learning Toolbox™).

You can import, preprocess, and analyze radiology images from various imaging modalities, including
projected X-ray imaging, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound
(US), and nuclear medicine (PET, SPECT). The Medical Image Labeler app lets you semi-automate 2D
and 3D labeling for use in AI workflows. You can perform multimodal registration of medical images,
including 2D images, 3D surfaces, and 3D volumes. The toolbox provides an integrated environment
for end-to-end computer-aided diagnosis and medical image analysis.
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Read, Process, and Write 3-D Medical Images

This example shows how to import and display volumetric medical image data, apply a filter to the
image, and write the processed image to a new file. You can use the medicalVolume object to import
image data and spatial information about a 3-D medical image in one object.

Download Image Volume Data

This example uses one chest CT volume saved as a directory of DICOM files. The volume is part of a
data set containing three CT scans. The size of the entire data set is approximately 81 MB.

Run this code to download the data set from the MathWorks® website and unzip the folder.

zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalVolumeDICOMData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)

The dataFolder folder contains the downloaded and unzipped data.

dataFolder = fullfile(filepath,"MedicalVolumeDICOMData","LungCT01");

Read Image File

The medicalVolume object imports data from the DICOM, NIfTI, and NRRD medical image file
formats. DICOM volumes can be stored as a single file or as a directory containing individual files for
each 2-D slice. The medicalVolume object automatically detects the file format and extracts the
image data, spatial information, and modality from the file metadata. For this example, specify the
data source as the download directory of the chest CT scan.

medVol = medicalVolume(dataFolder)

medVol = 
  medicalVolume with properties:

                 Voxels: [512×512×88 int16]
         VolumeGeometry: [1×1 medicalref3d]
           SpatialUnits: "mm"
            Orientation: "transverse"
           VoxelSpacing: [0.7285 0.7285 2.5000]
           NormalVector: [0 0 1]
       NumCoronalSlices: 512
      NumSagittalSlices: 512
    NumTransverseSlices: 88
           PlaneMapping: ["sagittal"    "coronal"    "transverse"]
               Modality: "CT"
          WindowCenters: [88×1 double]
           WindowWidths: [88×1 double]

The Voxels property contains the image intensity values. If the file metadata specifies the rescale
intercept and slope, medicalVolume automatically rescales the voxel intensities to the specified
units. In this example, the CT intensity values are rescaled to Hounsfield units.

intensities = medVol.Voxels;

The VolumeGeometry property contains a medicalref3d object that defines the spatial referencing
for the image volume, including the mapping between the intrinsic and patient coordinate systems.
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The intrinsic coordinate system is defined by the rows, columns, and slices of the Voxels array, with
coordinates in voxel units. The patient coordinate system is defined relative to the anatomical axes of
the patient, with real-world units such as millimeters.

R = medVol.VolumeGeometry

R = 
  medicalref3d with properties:

                 VolumeSize: [512 512 88]
                   Position: [88×3 double]
             VoxelDistances: {[88×3 double]  [88×3 double]  [88×3 double]}
    PatientCoordinateSystem: "LPS+"
               PixelSpacing: [88×2 double]
                   IsAffine: 1
              IsAxesAligned: 1
                    IsMixed: 0

Display Volume as Slices

Medical Imaging Toolbox™ provides several options for visualizing medical image data. For details,
see “Choose Approach for Medical Image Visualization” on page 3-2. For this example, display the
transverse slices of the CT volume by creating a sliceViewer object. By default, the viewer opens to
display the center slice. Use the slider to navigate through the volume.

sliceViewer(medVol)
title("CT Volume, Transverse Slices")
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Display the Volume in 3-D

Display the CT volume as a 3-D object by using the volshow function. The volshow function uses the
spatial details in medVol to set the Transformation property of the output Volume object and
display the volume in the patient coordinate system.

You can customize the volume display by setting properties of the Volume object. Specify a custom
transparency map and colormap that highlight the rib cage. The alpha and color values are based
on the CT-bone rendering style from the Medical Image Labeler app. The intensity values have
been tuned for this volume using trial and error.

alpha = [0 0 0.72 0.72];
color = [0 0 0; 231 208 141; 231 208 141; 255 255 255]/255;
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intensity = [-3024 50 1400 1499];
queryPoints = linspace(min(intensity),max(intensity),256);
alphamap = interp1(intensity,alpha,queryPoints)';
colormap = interp1(intensity,color,queryPoints);

Display the volume with the custom display settings.

vol = volshow(medVol,Colormap=colormap,Alphamap=alphamap);

Smooth Voxel Intensity Data

Smooth the image with a 3-D Gaussian filter. Applying a Gaussian filter is one approach for reducing
noise in medical images.

sigma = 2;
intensitiesSmooth = imgaussfilt3(intensities,sigma);

Create a new medicalVolume object that contains the smoothed voxel intensities and preserves the
spatial referencing of the original file. Create a copy of the original object medVol and set the
Voxels property of the new object, medVolSmooth, to the smoothed image data.

medVolSmooth = medVol;
medVolSmooth.Voxels = intensitiesSmooth;

Display the smoothed voxel data.
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figure
sliceViewer(medVolSmooth)
title("Smoothed CT Volume, Transverse Slices")

Write Processed Data to New NIfTI File

Write the smoothed image data to a new NIfTI file by using the write object function. The function
supports writing medical volume data in only the NIfTI file format.

niftiFilename = "LungCT01_smoothed.nii";
write(medVolSmooth,niftiFilename)

 Read, Process, and Write 3-D Medical Images

1-7



Read the new file using medicalVolume. Because the NIfTI file format does not contain metadata
related to modality or display windows, the Modality property value is "unknown" and the
WindowCenters and WindowWidths properties are empty.

medVolNIfTI = medicalVolume(niftiFilename);

See Also
medicalVolume | medicalref3d | extractSlice | sliceLimits

More About
• “Medical Image Coordinate Systems” on page 1-16
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Get Started with Medical Image Labeler
The Medical Image Labeler app enables you to explore and interactively label pixels in 2-D and 3-D
medical images. You can export labeled data as a groundTruthMedical object to train semantic
segmentation algorithms. You can publish snapshot images and animations with or without labels.

This tutorial provides an overview of the capabilities of the Medical Image Labeler and compares 2-
D and 3-D image labeling. The typical app workflow includes these steps:

1 “Open Medical Image Labeler App” on page 1-10
2 “Create or Open Labeling Session” on page 1-10
3 “Load Image Data” on page 1-10
4 “Visually Explore Data” on page 1-11
5 “Create Label Definitions” on page 1-11
6 “Label Image” on page 1-12
7 “Export Labeling Results” on page 1-14
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Open Medical Image Labeler App
Open the Medical Image Labeler app from the Apps tab on the MATLAB® toolstrip, under Image
Processing and Computer Vision. You can also load the app by using the medicalImageLabeler
command.

Create or Open Labeling Session
Manage labeling in the Medical Image Labeler using app sessions. Within one app session, you can
import and label multiple image files. These might be repeat scans from one patient or scans from
multiple patients with the same set of tissues, organs, or other regions of interest to label. The app
enables you to create either a volume session or an image session. Use a volume session to label 3-D
medical image data. Use an image session to label 2-D images or an image series, such as an
ultrasound video.

You can either create a new labeling session or reopen a previous session:

• New session — On the app toolstrip, click New Session and select New Volume session (3-D) or
New Image session (2-D). In the dialog box that opens, specify a session folder. As you draw the
label images, the app automatically saves them to the session folder. Therefore, the session folder
must have access to enough memory to save all label images for the session. For more details, see
the “How Medical Image Labeler Manages Ground Truth Labels” on page 1-14 section.

• Open session — On the app toolstrip, click Open Session and select one of the listed recent
sessions, or click Open Session and navigate to a previous session folder.

Load Image Data
Load images to label from a file or from a groundTruthMedical object. Load image files when
starting a new labeling project. Use groundTruthMedical objects when working with labeled or
partially labeled data from outside of MATLAB or that have been shared from a different workstation.
For more details about working on a multi-person labeling team, see “Collaborate on Multi-Labeler
Medical Image Labeling Projects” on page 5-28.

To load an image from a file, click Import and, under Data, select From File. The app supports
loading these file formats:

• Volume session — Single NIfTI, NRRD, or DICOM file, or a directory containing multiple DICOM
files corresponding to one image volume.

1 Getting Started
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• Image session — Single NIfTI or DICOM file.

To load a groundTruthMedical object, click Import, and under Ground Truth, select From File to
load the object from a MAT file or From Workspace to load the object from the MATLAB workspace.
Importing a groundTruthMedical object loads the image data, label data, and label definitions
stored in the object into the app.

The Data Browser pane lists all of the image files currently loaded in the app. Click a filename in the
Data Browser to change the file to display and label.

Visually Explore Data
The app displays 3-D image data using individual panes for the Transverse, Sagittal, and Coronal
slice planes and a 3-D Volume pane. For an example of how to customize the display of 3-D images,
and publish images and animations, see “Visualize 3-D Medical Image Data Using Medical Image
Labeler” on page 3-11. The app displays 2-D image data in the Slice pane. For details about
navigating frames or adjusting the brightness and contrast of a 2-D image series, see “Label 2-D
Ultrasound Series Using Medical Image Labeler” on page 5-2.

Create Label Definitions
A label definition specifies the name, color, and order of each label assigned to the image. You must
use the same label definitions across all images within an app session. The Medical Image Labeler
app supports pixel labeling.

You can create a label definition interactively in the app by clicking Create Label Definition in the
Label Definitions pane. Optionally, you can assign a name for the label by clicking it, or change the
color of the label by clicking the color square next to the label name.

 Get Started with Medical Image Labeler
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Alternatively, import label definitions from a label definitions file or as part of a
groundTruthMedical object. You can create a label definitions file programmatically, or load one
exported from a previous app session. For more details about creating a label definitions file
programmatically, see the LabelDefinitions property of the groundTruthMedical object.

Label Image
Label pixels using the tools in the Draw and Automate tabs of the app toolstrip. The app provides
manual, semi-automated, and automated labeling tools.

Manual Labeling

Manually draw labels using the Freehand, Assisted Freehand, Polygon, and Paintbrush tools.

Semi-Automated Labeling

Add labels using semi-automated tools including Fill Region, Paint by Superpixels, and Trace
Boundary. You can interpolate labeled regions between image frames or volume slices using the
Auto Interpolate and Manually Interpolate tools.
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Tool Description Image
Fill Region Flood fill label image or fill holes in

label region.

Paint by
Superpixels

Manually paint within an
adjustable-sized grid of pixels. To
use this tool, first select Paint
Brush and then click Paint by
Superpixels. Each superpixel
contains a cluster of similar
intensity values. Adjust the
Superpixels Size to change the
size of the superpixel grid.

Trace
Boundary

Label connected regions that have
similar intensity values. Select
Trace Boundary in the app
toolstrip, and then pause on a seed
pixel or voxel in the region you
want to label. The tool predicts the
boundary of the region by including
pixels or voxels with intensities
that are similar to the current seed.
Use the Threshold slider to adjust
the similarity threshold used to
predict the region boundary.
Increasing the threshold includes a
wider range of intensities above
and below the seed value in the
predicted region. Move your cursor
to change the seed.
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Automated Labeling

The Automate tab contains built-in automation algorithms to refine existing labels or fully automate
labeling. The app provides slice-based algorithms including Active Contours, Adaptive Threshold,
Dilate, and Erode. In a volume session, the app additionally provides the Filter and Threshold,
Smooth Edges, and Otsu's Threshold algorithms, which you can apply to all slices or to a specified
slice range.

You can add a custom automation algorithm to use in the app. On the Automate tab, click Add
Algorithm. Import an existing algorithm by selecting From File, or create a new algorithm using the
provided function or class template. See “Automate Labeling in Medical Image Labeler” on page 5-
20 for an example that applies a custom automation algorithm for 2-D labeling.

Labeling Examples

• For an example of labeling 2-D image data, see “Label 2-D Ultrasound Series Using Medical Image
Labeler” on page 5-2.

• For an example of labeling 3-D image data, see “Label 3-D Medical Image Using Medical Image
Labeler” on page 5-10.

Export Labeling Results
You can export the groundTruthMedical object and label definitions as files to share with a
colleague.

• To export the groundTruthMedical object as a MAT file, on the Labeler tab, click Export and,
under Ground Truth, select To File.

• To export the label definitions as a MAT file, on the Labeler tab, click Export and, under Label
Definitions, select To File.

Note The app stores the actual pixel label data in the LabelData subfolder of the session folder. See
“How Medical Image Labeler Manages Ground Truth Labels” on page 1-14 for details.

How Medical Image Labeler Manages Ground Truth Labels
As you label images in the Medical Image Labeler app, the app automatically saves three sets of
data in the session folder associated with the current app session.

• A groundTruthMedical object stored as a MAT file. The groundTruthMedical object specifies
the file locations of the unlabeled images and corresponding label images, as well as the name and
color associated with each label.

• A subfolder named LabelData, which contains the label images.

The app saves pixel label images created in an image session in the LabelData folder as MAT
files. A MAT file stores the pixel labels as a uint8 array. You can read the label image into the
MATLAB workspace by using the load function.

The app saves voxel label images created in a volume session in the LabelData folder as NIfTI
files. A NIfTI file stores the voxel labels as a uint8 array. You can read the label images into the
MATLAB workspace by using the niftiread function.
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• A subfolder named AppData, which contains data about the app session stored as a MAT file.

See Also
Medical Image Labeler | groundTruthMedical

Related Examples
• “Visualize 3-D Medical Image Data Using Medical Image Labeler” on page 3-11
• “Label 2-D Ultrasound Series Using Medical Image Labeler” on page 5-2
• “Label 3-D Medical Image Using Medical Image Labeler” on page 5-10
• “Automate Labeling in Medical Image Labeler” on page 5-20
• “Collaborate on Multi-Labeler Medical Image Labeling Projects” on page 5-28
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Medical Image Coordinate Systems
In medical imaging, there are two distinct coordinate systems: the intrinsic coordinate system and
the world, or patient, coordinate system. You can access locations in medical images using the
intrinsic coordinate system and the patient coordinate system.

The intrinsic coordinate system defines the voxel space, and the patient coordinate system defines
the anatomical space. To understand the position and orientation of intrinsic coordinates with respect
to the patient, you must transform the data into the patient coordinate system. You can use the
intrinsicToWorldMapping function to obtain the transformation between the intrinsic coordinates
and patient coordinates of a 3-D medical image volume stored as a medicalVolume object.

Patient Coordinate System
The patient coordinate system is made up of three orthogonal axes:

• Left (L)/Right (R) — x-axis
• Anterior (A)/Posterior (P) — y-axis
• Inferior (I)/Superior (S) — z-axis

The patient xyz-axes define the coronal, sagittal, and transverse anatomical planes. This table shows
the relationship between the anatomical planes and patient axes.

Anatomical Planes
and Patient Axes

Sagittal Plane Coronal Plane Transverse Plane

• Defined by the y- and
z-axes.

• Divides the body into
right and left

segments.

• Defined by the x- and
z-axes.

• Divides the body into
anterior and

posterior segments.

• Defined by the x- and
y-axes.

• Divides the body into
inferior and superior

segments.

Note The patient coordinate system rotates together with the physical orientation of the patient.

Mapping Patient Coordinate Axes to Anatomical Planes

Medical image files store a transformation matrix to map intrinsic coordinates (i, j, k) to patient
coordinates (x, y, z), and each file format has a different convention that defines the positive direction
of each axis.

For example, a DICOM file uses an LPS+ coordinate system and a NIfTI file uses an RAS+ coordinate
system.
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Patient Axes DICOM NIfTI
• x-axis values increase from

right to left
• y-axis values increase from

anterior to posterior
• z-axis values increase from

inferior to superior

• x-axis values increase from
left to right

• y-axis values increase from
posterior to anterior

• z-axis values increase from
inferior to superior

Intrinsic Coordinate System
The intrinsic coordinate system describes the spatial dimensions of the patient coordinate system.
Intrinsic coordinates are in units of voxels, while patient coordinates have real-world dimensions and
are usually in units of millimeters. You can obtain pixel dimensions from the PixelSpacing property of
a medicalImage object for 2-D data, and from the VoxelSpacing property of a medicalVolume
object for 3-D data.

The origin of the intrinsic coordinate system is located at the center of the first pixel (2-D image) or
voxel (3-D volume), represented by the black circle. The i-axis corresponds to the first dimension
(rows), the j-axis corresponds to the second dimension (columns), and the k-axis corresponds to the
third dimension of a medical image or volume.

This image grid shows the i-axis corresponding to the anatomical z-axis and the j-axis corresponding
to the anatomical x-axis,

whereas this image grid shows the i-axis corresponding to the anatomical x-axis and the j-axis
corresponding to the anatomical z-axis.

Both image grids represent a valid way a medical device might store voxels in a file. When you create
a medicalVolume object for an image volume, the spatial dimensions of the patient coordinate
system correspond to the values in the Voxels property of the object.
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Tip Use the intrinsicToWorldMapping function to compute the geometric transformation
between the intrinsic and patient coordinate systems for a medical image volume.

See Also
Objects
medicalref3d | medicalVolume

Functions
intrinsicToWorldMapping

Related Examples
• “Read, Process, and Write 3-D Medical Images” on page 1-3
• “Display Medical Image Volume in Patient Coordinate System” on page 3-21
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Introduction to Medical Imaging
Medical imaging is the acquisition and processing of images of the human body for clinical
applications. You can use medical image processing to improve the quality of medical images, for
diagnosis of medical conditions, for surgical planning, or for research. Medical imaging enables the
detailed, yet non-invasive, study of human anatomy. The success of medical imaging requires
collaboration between medical professionals such as radiologists, pathologists, or clinicians, and
technology professionals skilled in image processing. The major types of medical images you can
process for clinical applications are radiology images, such as MRI scans, CT scans, X-ray scans,
ultrasound scans, or PET/SPECT scans, or pathological microscopy images, such as biopsies and
blood smears.

You can analyze radiology images for a variety of applications.

• Diagnostic Systems: For example, to detect tumors from brain MRI scans, to detect COVID-19
from CT scans, to detect pneumonia from chest X-ray scans, or to detect tumors from breast
ultrasound.

• Biomedical Engineering: For example, to model bones or to design prostheses.
• Functional Analysis: For example, to analyze brain function from functional MRI.
• Pharmaceutical Research: For example, to measure drug efficacy and clearance time.
• Device Design: For example, to build new MRI, CT, ultrasound devices.

You can use Medical Imaging Toolbox to analyze radiology images for such applications. Although the
functions in Medical Imaging Toolbox are modality-agnostic, the major medical imaging modalities
that you can use the toolbox for include MRI, CT, X-ray, ultrasound, and PET/SPECT.

Common Medical Imaging Modalities

Magnetic Resonance Imaging (MRI)

The human body consists mostly of water, and therefore contains many hydrogen nuclei. MRI scans
acquire an image by disturbing the magnetic equilibrium of the hydrogen nuclei in the body. The
scanner then measures the time taken by the hydrogen nuclei to regain equilibrium, which varies
based on the composition of the organ being imaged. MRI scans are particularly useful for imaging
soft tissues such as the brain, spinal cord, nerves, muscles, ligaments, and tendons, as soft tissues
have more water content than bone. Unlike other radiology modalities, MRI scans do not use any
ionizing radiation. However, medical professionals must ensure that the patient undergoing the scan
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does not have any metal on or in their body that might be attracted to the magnetic field. There are
several forms of MRI, based on the nature of particles and the type of magnetization property
measured, including T1-weighted MRI, T2-weighted MRI, diffusion MRI, and functional MRI. The
different types of MRI provide different insights into the human body.

Mathematically, an MRI scanner generates an image in the Fourier domain also known as k-space.
Each scan typically consists of a collection of 2-D slices imaged in k-space. The scanner transforms
the k-space image to the spatial domain, enabling you to observe the imaged anatomy. The final
output of the MRI scanner is a 3-D volume in the spatial domain with spatial localization details. You
can use a medicalVolume object to store the voxel data and spatial referencing information for the
MRI volume. MRI images are prone to degradations in the form of acquisition noise, undersampling
artifacts, and patient motion artifacts.

Computed Tomography (CT)

CT scans use X-ray radiation to image human anatomy. The magnitude of attenuation of the radiation
depends on the organ being imaged. Because bones effectively block X-rays, CT scans image them
particularly well. You can image tissues in the human body, using contrast agents, which help
attenuate the X-rays. As a result, CT scans are versatile and can be used for imaging of the head and
neck, as well as organs such as heart, lungs, abdomen, and pelvis. Additionally, CT scans are fast and
cost-effective for patients.

Mathematically, a CT scanner reconstructs the image from a series of projections obtained using the
Radon transform, typically represented as a sinogram. The Radon transform produces a collection of
projections of radiation through the body along different angles. There are a variety of techniques to
reconstruct an image from the projection data, including the inverse Radon transformation and other
iterative methods, enabling you to observe the imaged anatomy. The final output of the CT scanner is
a 3-D volume in the spatial domain with spatial localization details. You can use a medicalVolume
object to store the voxel data and spatial referencing information for the CT volume. CT images are
prone to degradations in the form of low contrast and artifacts due to miscalibration of the X-ray
detectors.

X-Ray Imaging

X-ray imaging is a direct digitized recording of the attenuation of the X-ray radiation on a 2-D sensor
array or a radiographic film. It is fast and cost-effective compared to other scans. Thus, it is a good
option for preliminary diagnosis. Mathematically, an X-ray image is a simple 2-D image captured by
an X-ray detector. You can use a medicalImage object to store the pixel data and metadata for an X-
ray image.

Ultrasound (US)

Ultrasound imaging involves emitting of ultrasound waves and measuring the strength of the
reflected echo waves. The strength of the reflected echo waves depends on the organ being imaged.
Because air can block ultrasound waves, it is not suitable for imaging bones, or tissues that contain
air such as lungs. You can use ultrasound imaging to, for example, monitor the development of a fetus
during pregnancy, or for imaging the heart, breast, and abdomen. You can use Doppler ultrasound for
functional imaging of the blood flow in the blood vessels.

Mathematically, an ultrasound image is derived from the reflected ultrasound waves. The final output
of the ultrasound scan is a sequence of 2-D images in the spatial domain. You can use a
medicalImage object to store the pixel data and metadata for an ultrasound image sequence. Note
that the emitted and reflected ultrasound waves can cause interference, which can show up as
speckle in the ultrasound image.
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Nuclear Medicine Imaging

Nuclear medicine imaging involves introducing radioactive tracers, also known as radiotracers or
radiopharmaceuticals, that contain radioactive isotopes into the body of the patient. The movement of
the radiotracers in the body of the patient provides insights about the organs being imaged. Different
types of nuclear medicine imaging employ different radiotracers and are used for different purposes.
Mathematically, nuclear medicine imaging is performed as a tomography. The decay of the
radiotracers emits radiation, and the scanner measures the attenuation of the radiation in the
tomography. The final output of the scanner is a 3-D volume in the spatial domain with spatial
localization details. You can use a medicalVolume object to store the voxel data and spatial
referencing information for a 3-D volume.

Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) use
different types of radiotracers for imaging. The decay of the radiotracers used in PET emits positrons.
PET is used primarily for diagnosis and tracking of cancer. The decay of the radiotracers used in
SPECT emits gamma rays. SPECT is used primarily for diagnosis and tracking of heart disease.

Typical Workflow for Medical Image Analysis

Import and Spatial Referencing

A typical medical imaging workflow begins with importing the medical images into the workspace.
Medical images are available in file formats such as NIfTI, DICOM, NRRD, Analyze7.5, and Interfile.
Medical Imaging Toolbox provides several functions you can use to import medical images into the
workspace and export them back to medical image formats after processing. For more information,
see “Read, Process, and Write 3-D Medical Images” on page 1-3.

Display, Volume Rendering, and Surfaces

Once you have imported a medical image into the workspace, you can view and inspect the image to
plan your workflow. Medical Imaging Toolbox provides tools for detailed viewing of the medical
images in different orientations, for volume rendering to visualize intensity volumes in 3-D, and for
generating surfaces for efficient display or 3-D printing or modeling applications. For more
information, see “Visualize 3-D Medical Image Data Using Medical Image Labeler” on page 3-11.

 Introduction to Medical Imaging

1-21



Preprocessing and Augmentation

An imported medical image can contain noise that you must reduce. Multiple medical images that you
must process together can be misaligned and require registration. Also, if the medical imaging data
set is too small for your intended application, you might need to augment it. Medical Imaging Toolbox
provides functions for preprocessing and augmentation. For more information, see “Medical Image
Preprocessing” on page 4-2.

Ground Truth Labeling and Segmentation

For object detection in deep learning applications, you might need to perform segmentation and
labeling of the preprocessed medical image training data set. Medical Imaging Toolbox provides the
Medical Image Labeler app for segmentation and ground truth labeling. For more information, see
“Get Started with Medical Image Labeler” on page 1-9.
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Read, Process, and View Ultrasound Data

This example shows how to import and display a 2-D multiframe ultrasound series, and how to apply
a denoising filter to each frame of the series.

You can use the medicalImage object to import image data and metadata from 2-D medical images
and series of images related by time. In this example, you use the properties and the extractFrame
object function of a medicalImage object to work with a multiframe echocardiogram ultrasound
series.

Read Ultrasound Image Series

Specify the name of an echocardiogram ultrasound series contained in a DICOM file.

filename = "heartUltrasoundSequenceVideo.dcm";

Read the metadata and image data from the file by creating a medicalImage object. The image data
is stored in the Pixels property. Each frame of the image series is a 600-by-800-by-3 pixel RGB
image. The FrameTime property indicates that each frame has a duration of 33.333 milliseconds. The
NumFrames property indicates that the series has a total of 116 image frames.

medImg = medicalImage(filename)

medImg = 
  medicalImage with properties:

          Pixels: [600×800×116×3 uint8]
        Colormap: []
    SpatialUnits: "unknown"
       FrameTime: 33.3330
       NumFrames: 116
    PixelSpacing: [1 1]
        Modality: 'US'
    WindowCenter: []
     WindowWidth: []

Display Ultrasound Image Frames as Montage

Display the frames in the Pixels property of medImg as a montage.

montage(medImg)
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Display Ultrasound Series as Video

Open the Video Viewer app to view the ultrasound series as a video by using the implay function.
The implay function automatically sets the frame rate using the FrameTime property of medImg.

implay(medImg)
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Reduce Speckle Noise

Reduce the noise in the ultrasound image series by applying a speckle-reducing anisotropic diffusion
filter to each frame. Extract each frame from the medicalImage object by using the extractFrame
object function, and convert the frame from RGB to grayscale. Apply the filter by using the
specklefilt function. Specify the DegreeOfSmoothing and NumIterations name-value
arguments to control the smoothing parameters.

[h,w,d,c] = size(medImg.Pixels);
pixelsSmoothed = zeros(h,w,d);
for i = 1:d
    Ii = extractFrame(medImg,i);
    Ii = im2double(im2gray(Ii));
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    pixelsSmoothed(:,:,i) = specklefilt(Ii,DegreeOfSmoothing=0.6,NumIterations=50);
end

Store Smoothed Data as Medical Image Object

Create a new medicalImage object that contains the smoothed image pixels. Use the property
values from the original file to maintain the correct frame information.

medImgSmoothed = medImg;
medImgSmoothed.Pixels = pixelsSmoothed;
medImgSmoothed

medImgSmoothed = 
  medicalImage with properties:

          Pixels: [600×800×116 double]
        Colormap: []
    SpatialUnits: "unknown"
       FrameTime: 33.3330
       NumFrames: 116
    PixelSpacing: [1 1]
        Modality: 'US'
    WindowCenter: []
     WindowWidth: []

View the first frame of the smoothed image series by using the montage function with the Indices
name-value argument set to 1.

figure
montage(medImgSmoothed,Indices=1)
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Display the smoothed image data as a video.

implay(pixelsSmoothed)
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See Also
medicalImage | extractFrame | specklefilt | montage | Video Viewer

Related Examples
• “Read, Process, and Write 3-D Medical Images” on page 1-3
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Display and Volume Rendering

• “Choose Approach for Medical Image Visualization” on page 3-2
• “Visualize 3-D Medical Image Data Using Medical Image Labeler” on page 3-11
• “Display Medical Image Volume in Patient Coordinate System” on page 3-21
• “Display Labeled Medical Image Volume in Patient Coordinate System” on page 3-24
• “Create STL Surface Model of Femur Bone for 3-D Printing” on page 3-31
• “Medical Image-Based Finite Element Analysis of Spine” on page 3-39
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Choose Approach for Medical Image Visualization
Medical Imaging Toolbox provides tools to display, explore, and publish 2-D and 3-D medical image
data. Visualization is important for clinical diagnosis, treatment planning, and image analysis.
Sharing snapshots and animations helps convey useful clinical information to patients, colleagues,
and in publications.

Display 2-D Medical Image Data
2-D medical image data includes single images such as X-rays as well as multiframe image series
such as ultrasound videos. The Medical Image Labeler app is useful for interactive display,
especially when viewing multiple image files or labeled data. To view 2-D images without needing to
launch the app, use the montage and implay object functions, which accept a medicalImage object
as input.

This table describes the options for displaying 2-D medical image data using Medical Imaging
Toolbox. If you do not have Medical Imaging Toolbox installed, see “Display and Exploration” (Image
Processing Toolbox™).
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Goal Approach Image See Also
Interactively explore
images:

• View multiple
related image
files in one app
session.

• Toggle visibility
of labels and
adjust label
opacity.

• Adjust display
contrast by
modifying the
intensity window
and level.

Medical Image
Labeler app

• Open the app
from the MATLAB
Toolstrip, on the
Apps tab, under
Image
Processing and
Computer
Vision.

• Open the app
from the MATLAB
command prompt
using
medicalImageL
abeler.

• “Label 2-D
Ultrasound Series
Using Medical
Image Labeler”
on page 5-2
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Goal Approach Image See Also
Publish snapshots
and animations to
view outside of
MATLAB.

Medical Image
Labeler app

• Open the app
from the MATLAB
Toolstrip, on the
Apps tab, under
Image
Processing and
Computer
Vision.

• Open the app
from the MATLAB
command prompt
using
medicalImageL
abeler.

• Export Snapshot
Image from App
on page 3-0

• Export
Animations from
App on page 3-
0
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Goal Approach Image See Also
Programmatically
display all frames in
an image series.

Display the data in
the medicalImage
object medImage by
using the command
montage(medImage
).

“Read, Process, and
View Ultrasound
Data” on page 2-2
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Goal Approach Image See Also
Programmatically
play image series as
a video.

Display the data in
the medicalImage
object medImage by
using the command
implay(medImage)
.

“Read, Process, and
View Ultrasound
Data” on page 2-2

Display 3-D Medical Image Data
3-D medical image data includes volumes from modalities such as computed tomography (CT),
magnetic resonance imaging (MRI), and positron emission tomography (PET). The Medical Image
Labeler app is useful for interactive display, especially when viewing multiple image files or labeled
data. To view 3-D images without needing to launch the app, use the volshow and montage object
functions or create a sliceViewer object, which all accept a medicalVolume object as input.

This table describes the options for displaying 3-D medical image data using Medical Imaging
Toolbox. If you do not have Medical Imaging Toolbox installed, see “Display and Exploration” (Image
Processing Toolbox).
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Goal Approach Image See Also
Interactively explore
image volumes:

• View multiple
related image
files in one app
session.

• Toggle visibility
of labels and
adjust label
opacity.

• Adjust display
contrast by
modifying the
intensity window
and level.

• Publish snapshots
and animations to
view outside of
MATLAB.

Medical Image
Labeler app

• Open the app
from the MATLAB
Toolstrip, on the
Apps tab, under
Image
Processing and
Computer
Vision.

• Open the app
from the MATLAB
command prompt
using
medicalImageL
abeler.

“Visualize 3-D
Medical Image Data
Using Medical Image
Labeler” on page 3-
11
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Goal Approach Image See Also
Publish snapshots
and animations to
view outside of
MATLAB.

Medical Image
Labeler app

• Open the app
from the MATLAB
Toolstrip, on the
Apps tab, under
Image
Processing and
Computer
Vision.

• Open the app
from the MATLAB
command prompt
using
medicalImageL
abeler.

• Export Snapshot
Image from App
on page 3-0

• Export
Animations from
App on page 3-
0

Programmatically
display volume in a
figure window, with
optional label
overlays.

Display the data in
the medicalVolume
object medVol by
using the command
volshow(medVol).

• “Display Medical
Image Volume in
Patient
Coordinate
System” on page
3-21

• “Display Labeled
Medical Image
Volume in Patient
Coordinate
System” on page
3-24
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Goal Approach Image See Also
Programmatically
display slices along
one dimension.

Display the data in
the medicalVolume
object medVol by
using the command
montage(medVol).

“Read, Process, and
Write 3-D Medical
Images” on page 1-3
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Goal Approach Image See Also
Programmatically
display slices along
one dimension in a
scrollable figure
window.

Display the data in
the medicalVolume
object medVol by
using the command
sliceViewer(medV
ol).

“Display Medical
Image Volume in
Slice Viewer”

See Also
Medical Image Labeler | implay | montage | volshow | sliceViewer

Related Examples
• “Image Display and Exploration Overview”
• “Visualize 3-D Medical Image Data Using Medical Image Labeler” on page 3-11
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Visualize 3-D Medical Image Data Using Medical Image Labeler

This example shows how to interactively explore medical image volumes and export snapshots and
animations from the Medical Image Labeler app.

Download Data

This example labels chest CT data from a subset of the Medical Segmentation Decathlon data set [1
on page 3-20]. Download the MedicalVolumNIfTIData.zip file from the MathWorks® website,
then unzip the file. The size of the subset of data is approximately 76 MB.

zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalVolumeNIfTIData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)
dataFolder = fullfile(filepath,"MedicalVolumeNIfTIData");

Open Medical Image Labeler

Open the Medical Image Labeler app from the Apps tab on the MATLAB® toolstrip, under Image
Processing and Computer Vision. You can also open the app by using the medicalImageLabeler
command.
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Create New Volume Labeling Session

To start a new 3-D session, on the app toolstrip, click New Session and select New Volume session
(3-D). In the Create a new session folder dialog box, specify a location in which to save the new
session folder by entering a path or selecting Browse and navigating to your desired location. In the
New Session Folder box, specify a name for the folder for this app session. Select Create Session.

Load Image Data into Medical Image Labeler

To load an image into the Medical Image Labeler app, on the app toolstrip, click Import. Then,
under Data, select From File. Browse to the location containing the downloaded data, specified by
the dataFolder workspace variable, and select the file lung_027.nii.gz. For a Volume Session,
the imported data file can be a single DICOM or NIfTI file containing a 3-D image volume, or a
directory containing multiple DICOM files corresponding to a single image volume.

View Data as Anatomical Slice Planes

The app displays the data as anatomical slice planes in the Transverse, Sagittal, and Coronal
panes.

By default, the app displays the center slice in each slice plane. You can change the displayed slice by
using the scroll bar at the bottom of a slice pane, or you can click the pane and then press the left
and right arrow keys. The app displays the current slice number out of the total number of slices,
such as 132/264, for each slice pane. The app also displays anatomical display markers indicating the

3 Display and Volume Rendering

3-12



anterior (A), posterior (P), left (L), right (R), superior (S), and inferior (I) directions. To toggle the
visibility of the display markers, on the app toolstrip, click Display Markers and, under 2-D Slices,
select or clear 2D Orientation Markers. You can zoom in on the current slice pane using the mouse
scroll wheel or the zoom controls that appear when you pause on the slice pane.

By default, the app displays the scan using the Radiological display convention, with the left side of
the patient on the right side of the image. To display the left side of the patient on the left side of the
image, on the app toolstrip, click Display Convention and select Neurological.

You can adjust the brightness and contrast used to display grayscale image data by using the
Window Level tool on the Labeler tab of the app toolstrip. First, on the app toolstrip, select

. Then, click and hold in any of the slice panes, and drag up and down to increase and
decrease the brightness, respectively, or left and right to increase and decrease the contrast. The

updated window bounds are displayed in the app toolstrip under Window Bounds. Clear  to
deactivate the tool. Changing the display window does not modify the image data. To reset the
brightness and contrast, click Window Level and select Reset.

View Data as 3-D Volume

The app displays the data as a 3-D volume in the 3-D Volume pane. You can toggle the visibility of
the volume display using the Show Volume button on the Labeler tab of the app toolstrip.

In the 3-D Volume pane, click and drag to rotate the volume or use the scroll wheel to zoom. You can
adjust the volume display using the tools in the Volume Rendering tab of the app toolstrip. To
change the background color, click Background Color. Toggle the use of a background gradient by
clicking Use Gradient. To change the gradient color, with Use Gradient selected, click Gradient
Color. To restore the default background settings, click Restore Background. You can also view
orientation axes and scale bar display markers in the 3-D Volume pane. To toggle the visibility of
each display marker, on the Labeler tab of the app toolstrip, click Display Markers, and under 3-D
Volume, select or clear 3D Orientation Axes and Scale Bars.
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You can change how the app displays voxel intensity data by selecting one of several built-in
rendering styles. On the Volume Rendering tab, select CT - Bone from the Rendering Presets
gallery to use an alphamap and colormap recommended for highlighting bone tissue in computed
tomography (CT) scans. To refine the built-in displays for your data set, adjust the display parameters
by using the Rendering Editor. To open the editor, on the Volume Rendering tab of the app
toolstrip, click Rendering Editor.
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Using the Rendering Editor, you can manually adjust the rendering technique, the transparency
alphamap, and the colormap of the 3-D volume rendering. The app supports these rendering
techniques:

• Volume Rendering — View the volume based on the specified color and transparency for each
voxel.

• Maximum Intensity Projection — View the voxel with the highest intensity value for each ray
projected through the data.

• Gradient Opacity — View the volume based on the specified color and transparency, with an
additional transparency applied if the voxel is similar in intensity to the previous voxel along the
viewing ray.

When you render a volume with uniform intensity using Gradient Opacity, the internal portion of
the volume appears more transparent than in the Volume Rendering rendering style, enabling
better visualization of label data, if present, and intensity gradients in the volume. For this example,
select Gradient Opacity.
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You can refine the alphamap and colormap by manipulating the plots and colorbar in the Rendering
Editor directly. To save your customized settings, in the Volume Rendering tab of the app toolstrip,
click Save Rendering. The app adds an icon for your custom settings to the gallery in the app
toolstrip, under User-Defined. If you have multiple files loaded in the app session, you can apply the
same built-in or custom rendering settings to all volumes by clicking Apply To All Volumes in the
app toolstrip.

Export Snapshot Image from App

You can export images from the Medical Image Labeler app to use for figures. In the Labeler tab of
the app toolstrip, click Save Snapshot. In the Save Snapshot dialog box, select the views you want to
export and click Save. By default, the app saves a snapshot for the transverse, coronal, and sagittal
slice planes, as well as the 3-D volume window. In the second dialog box, specify the location where
you want to save the images, and click Save again. Each snapshot is saved as a separate PNG file.
The 2-D snapshots match the current brightness and contrast settings of the app, but show the full
slice without any zooming or anatomical display markers. The 3-D snapshot matches the current
rotation and zoom values in the 3-D Volume pane, and contains any enabled display markers.

Export Animations from App

You can generate 2-D animations that scroll through transverse, sagittal, or coronal slices, or 3-D
animations of the volume rotating about a specified axis. Access the animation generator tool in the
Labeler tab of the app toolstrip by clicking Generate Animations.

To export a 2-D animation, in the Animation editor, select 2-D slices. In the Direction section,
specify the Slice Direction along which you want to view slices. Use the settings in the Animation
section to customize the Slice Range and Step Size. Select Append animation in reverse to make
the animation scroll forward and then backward through the slides, rather than forward only. In the
Export section, specify the Loop Count and Animation Length. Specify the loop count as a positive
integer, for a fixed number of loops, or as inf to create a continuously looping animation. Specify the
animation length in seconds. The editor displays the speed in frames per second based on your
specified slice range and animation length. The settings in this image create an animation that
captures every eighth slice along the transverse direction. Each loop animates forward and then in
reverse through the slice range. The animation loops infinitely, with a length of 10 seconds per loop,
and a frame rate of 6.475 FPS.
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Click Preview to preview one loop of the animation with the specified Direction and Animation
settings. The preview does not reflect the loop count or animation length of the exported GIF. The
preview plays in the slice view of the selected slice direction. If you are satisfied with the preview,
click Export GIF, and, in the dialog box, select the location to save the animation GIF file. You can
open and view the GIF file from the saved location and share the animation outside of MATLAB.
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To export a 3-D animation, in the Animation editor, select 3-D Volume. Under Camera, select the
Rotation Axis to rotate around as SI (superior-inferior), LR (left-right), AP (anterior-posterior), or
the current up vector in the 3-D Volume pane. Select Snap Camera to Axis to set the camera
location to view the volume head-on versus maintaining the rotation in the 3-D Volume pane. In the
Animation section, use Limits to specify the orientations, in degrees, between which to rotate the
volume. Specify the Step Size in degrees. The settings in this image create an animation of the
volume rotating about the superior-inferior axis, with frames acquired every ten degrees of rotation.
The animation loops infinitely, with a length of 3 seconds per loop.
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Click Preview to preview one loop of the animation with the specified Camera and Animation
settings. The preview does not reflect the loop count or animation length of the exported GIF. The
preview plays in the 3-D Volume pane. If you are satisfied with the preview, click Export GIF, and,
in the dialog box, select the location to save the animation GIF file. You can open and view the GIF file
from the saved location and share the animation outside of MATLAB.
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References

[1] Medical Segmentation Decathlon. "Lung." Tasks. Accessed May 10, 2018. http://
medicaldecathlon.com. The Lung data set is provided by the Medical Segmentation Decathlon under
the CC-BY-SA 4.0 license. All warranties and representations are disclaimed. See the license for
details. This example uses a subset of the original data set consisting of two CT volumes.

See Also
Medical Image Labeler | sliceViewer | volshow | montage

Related Examples
• “Choose Approach for Medical Image Visualization” on page 3-2
• “Display Medical Image Volume in Patient Coordinate System” on page 3-21
• “Display Labeled Medical Image Volume in Patient Coordinate System” on page 3-24
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Display Medical Image Volume in Patient Coordinate System

This example shows how to display 3-D CT data in the patient coordinate system using volshow. The
volshow function uses the spatial referencing information from a medicalVolume object to
transform intrinsic image coordinates, in voxel units, to patient coordinates in real-world units such
as millimeters. This is particularly useful for visualizing anisotropic image voxels, which have unequal
spatial dimensions. Viewing images in the patient coordinate system accurately represents the aspect
ratio of anisotropic voxels, which avoids distortions in the image. If you do not have Medical Imaging
Toolbox™ installed, see volshow (Image Processing Toolbox™).

Download Image Volume Data

This example uses a chest CT volume saved as a directory of DICOM files. The volume is part of a
data set containing three CT volumes. The size of the entire data set is approximately 81 MB.
Download the data set from the MathWorks® website, then unzip the folder.

zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalVolumeDICOMData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)
dataFolder = fullfile(filepath,"MedicalVolumeDICOMData","LungCT01");

Import Image Volume

Create a medicalVolume object that contains the image data and spatial referencing information for
the CT volume. The Voxels property contains a numeric array of the voxel intensities. The
VoxelSpacing property indicates that the voxels are anisotropic, with a size of 0.7285-by-0.7285-
by-2.5 mm.

medVol = medicalVolume(dataFolder)

medVol = 
  medicalVolume with properties:

                 Voxels: [512×512×88 int16]
         VolumeGeometry: [1×1 medicalref3d]
           SpatialUnits: "mm"
            Orientation: "transverse"
           VoxelSpacing: [0.7285 0.7285 2.5000]
           NormalVector: [0 0 1]
       NumCoronalSlices: 512
      NumSagittalSlices: 512
    NumTransverseSlices: 88
           PlaneMapping: ["sagittal"    "coronal"    "transverse"]
               Modality: "CT"
          WindowCenters: [88×1 double]
           WindowWidths: [88×1 double]

Display Image Volume

Create a colormap and transparency map to display the rib cage. The alpha and color values are
based on the CT-bone rendering style from the Medical Image Labeler app. The intensity values
for this volume have been tuned in the app using trial and error.

alpha = [0 0 0.72 0.72];
color = [0 0 0; 231 208 141; 231 208 141; 255 255 255]/255;
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intensity = [-3024 50 1400 1499];
queryPoints = linspace(min(intensity),max(intensity),256);
alphamap = interp1(intensity,alpha,queryPoints)';
colormap = interp1(intensity,color,queryPoints);

To display the volume in patient coordinates, pass the medicalVolume object as input to volshow.
Specify the custom colormap and transparency map. The volshow function uses the spatial details in
medVol to set the Transformation property of the output Volume object, volPatient. The voxels
are scaled to the correct anisotropic dimensions. The axes display indicators label the inferior/
superior (S), left/right (L), and anterior/posterior (P) anatomical axes.

volPatient = volshow(medVol,Colormap=colormap,Alphamap=alphamap);
volPatient.Transformation.A

ans = 4×4

         0    0.7285         0 -186.5000
    0.7285         0         0 -186.5000
         0         0    2.5000 -281.2500
         0         0         0    1.0000

See Also
medicalVolume | medicalref3d | intrinsicToWorldMapping | volshow
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Related Examples
• “Display Labeled Medical Image Volume in Patient Coordinate System” on page 3-24
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Display Labeled Medical Image Volume in Patient Coordinate
System

This example shows how to display labeled 3-D medical image volumes by using volshow. The
volshow function uses the spatial referencing information from a medicalVolume object to
transform intrinsic image coordinates, in voxel units, to patient coordinates in real-world units such
as millimeters. You can visualize labels as an overlay by using the OverlayData property of the
Volume object created by volshow. If you do not have Medical Imaging Toolbox™ installed, see
volshow (Image Processing Toolbox™).

Download Image Volume Data

This example uses a subset of the Medical Segmentation Decathlon data set [1 on page 3-30]. The
subset of data includes two CT chest volumes and corresponding label images, stored in the NIfTI file
format.

Run this code to download the MedicalVolumNIfTIData.zip file from the MathWorks® website,
then unzip the file. The size of the data file is approximately 76 MB.

zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalVolumeNIfTIData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)

The folder dataFolder contains the downloaded and unzipped data.

dataFolder = fullfile(filepath,"MedicalVolumeNIfTIData");

Specify the filenames of the CT volume and label image used in this example.

dataFile = fullfile(dataFolder,"lung_043.nii.gz");
labelDataFile = fullfile(dataFolder,"LabelData","lung_043.nii.gz");

Import Image Volume

Create a medical volume object that contains the image data and spatial referencing information for
the CT volume. The Voxels property contains a numeric array of the voxel intensities. The
VoxelSpacing property indicates that the voxels are anisotropic, with a size of 0.7695-by-0.7695-
by-2.5 mm.

medVolData = medicalVolume(dataFile)

medVolData = 
  medicalVolume with properties:

                 Voxels: [512×512×129 single]
         VolumeGeometry: [1×1 medicalref3d]
           SpatialUnits: "mm"
            Orientation: "transverse"
           VoxelSpacing: [0.7695 0.7695 2.5000]
           NormalVector: [0 0 -1]
       NumCoronalSlices: 512
      NumSagittalSlices: 512
    NumTransverseSlices: 129
           PlaneMapping: ["sagittal"    "coronal"    "transverse"]
               Modality: "unknown"
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          WindowCenters: 0
           WindowWidths: 0

Import Label Data

Create a medical volume object that contains the label image data. The label image has the same
spatial information as the intensity CT volume.

medvolLabels = medicalVolume(labelDataFile)

medvolLabels = 
  medicalVolume with properties:

                 Voxels: [512×512×129 uint8]
         VolumeGeometry: [1×1 medicalref3d]
           SpatialUnits: "mm"
            Orientation: "transverse"
           VoxelSpacing: [0.7695 0.7695 2.5000]
           NormalVector: [0 0 -1]
       NumCoronalSlices: 512
      NumSagittalSlices: 512
    NumTransverseSlices: 129
           PlaneMapping: ["sagittal"    "coronal"    "transverse"]
               Modality: "unknown"
          WindowCenters: 0
           WindowWidths: 0

Display CT Volume with Tumor Overlay

Create a colormap and transparency map to display the rib cage. The alpha and color values are
based on the CT-bone rendering style from the Medical Image Labeler app. The intensity values
have been tuned for this volume using trial and error.

alpha = [0 0 0.72 0.72];
color = ([0 0 0; 186 65 77; 231 208 141; 255 255 255]) ./ 255;
intensity = [-3024 -200 0 3071];
queryPoints = linspace(min(intensity),max(intensity),256);
alphamap = interp1(intensity,alpha,queryPoints)';
colormap = interp1(intensity,color,queryPoints);

To display the volume in the patient coordinate system, pass the medicalVolume object as input to
volshow. Specify the custom colormap and transparency map. The volshow function uses the
spatial details in medVol to set the Transformation property of the output Volume object, vol.
The voxels are scaled to the correct anisotropic dimensions. The axes display indicators label the
inferior/superior (S), left/right (L), and anterior/posterior (P) anatomical axes.

vol = volshow(medVolData, ...
    Colormap=colormap, ...
    Alphamap=alphamap);
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Programatically set the camera position and camera target of the scene to view the volume in the
coronal anatomical plane. You can also set the view interactively by clicking the A orientation marker
in the figure window.

scene = vol.Parent;
scene.CameraPosition = [-4.0999 314.9362 -143.0000];
scene.CameraTarget = [-4.0999 -6.9636 -143.0000];
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View the tumor label image as an overlay on the CT volume. You can set the OverlayData and
OverlayAlphamap properties of an existing Volume object, or specify them during creation using
volshow. Note that you must set the OverlayData property to the numeric array in the Voxels
property of medVolLabels, rather than the medicalVolume object itself.

vol.OverlayData = medvolLabels.Voxels;
vol.OverlayAlphamap = 1;
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Display CT Volume as Slice Planes

Visualize the CT volume and label overlay as slice planes. Use the RenderingStyle name-value
argument to specify the rendering style as "SlicePlanes". Specify the tumor label overlay using
the OverlayData name-value argument. Note that you must set the OverlayData property to the
numeric array in the Voxels property of medVolLabels, rather than the medicalVolume object
itself.

volSlice = volshow(medVolData, ...
    OverlayData=medvolLabels.Voxels, ...
    RenderingStyle="SlicePlanes", ...
    Alphamap=linspace(0.01,0.2,256), ...
    OverlayAlphamap=0.75);

To scroll through the transverse slices, pause the cursor on the transverse slice until it highlights in
blue, then drag the cursor along the inferior/superior axis.
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Drag the cursor to rotate the volume. The tumor overlay is visible in the slices for which the overlay
is defined.
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References

[1] Medical Segmentation Decathlon. "Lung." Tasks. Accessed May 10, 2018. http://
medicaldecathlon.com/. The Medical Segmentation Decathlon data set is provided under the CC-BY-
SA 4.0 license. All warranties and representations are disclaimed. See the license for details.

See Also
volshow | Volume Properties | medicalref3d | medicalVolume | intrinsicToWorldMapping

Related Examples
• “Display Medical Image Volume in Patient Coordinate System” on page 3-21
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Create STL Surface Model of Femur Bone for 3-D Printing

This example shows how to convert a segmentation mask from a CT image into an STL surface model
suitable for 3-D printing.

There are several clinical applications and research areas involving 3-D printing of medical image
data:

• Surgical treatment planning using patient-specific anatomical models.
• Fabrication of custom prosthetics, implants, or surgical tools.
• Bioprinting of tissues and organs.

3-D printing creates physical models of computer-generated surface models. The typical workflow for
3-D printing anatomical structures from medical image volumes includes these steps:

1 Segment the region of interest, such as a bone, organ, or implant.
2 Convert the segmentation mask to a triangulated surface, defined by faces and vertices.
3 Write the triangulation to an STL file, which most commercial 3-D printers accept.
4 Import the STL file into the 3-D printing software, and print the model.

This example converts a mask of a femur bone into a triangulated surface, and writes an STL file
suitable for 3-D printing.

Download Image Volume Data

This example uses a binary segmentation mask of a femur. The mask was created by segmenting a CT
scan from the Medical Segmentation Decathlon liver data set [1 on page 3-37] using the Medical
Image Labeler app. For an example of how to segment medical image volumes, see “Label 3-D
Medical Image Using Medical Image Labeler” on page 5-10.
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When you label an image in the Medical Image Labeler, the app saves the segmentation mask as a
NIfTI file. You can find the file path of the mask generated in an app session by checking the
LabelData property of the groundTruthMedical object exported from that session.

This example downloads the femur mask as part of a data set containing the original abdominal CT
volume as well as masks of the femur and liver. Download the data set from the MathWorks®
website, then unzip the folder.

zipFile = matlab.internal.examples.downloadSupportFile("medical", ...
    "MedicalVolumeLiverNIfTIData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)
dataFolder = fullfile(filepath,"MedicalVolumeLiverNIfTIData");

Specify the filename of the femur mask.

filename = fullfile(dataFolder,"Femur.nii");

Load CT Segmentation Mask

Import the femur mask by creating a medicalVolume object for the NIfTI file. The image data is
stored in the Voxels property. The VoxelSpacing property indicates that the voxels are anisotropic,
with a size of 0.7-by-0.7-by-5.0 mm.

medVol = medicalVolume(filename)

medVol = 
  medicalVolume with properties:

                 Voxels: [512×512×75 uint8]
         VolumeGeometry: [1×1 medicalref3d]
           SpatialUnits: "mm"
            Orientation: "transverse"
           VoxelSpacing: [0.7031 0.7031 5]
           NormalVector: [0 0 1]
       NumCoronalSlices: 512
      NumSagittalSlices: 512
    NumTransverseSlices: 75
           PlaneMapping: ["sagittal"    "coronal"    "transverse"]
               Modality: "unknown"
          WindowCenters: 0
           WindowWidths: 0

The VolumeGeometry property of a medical volume object contains a medicalref3d object that
specifies the spatial referencing information. Extract the medicalref3d object for the CT scan into a
new variable, R.

R = medVol.VolumeGeometry;

Extract Isosurface of Femur

Specify the isovalue for isosurface extraction.

isovalue = 0.05;

Extract the vertices and faces that define an isosurface for the image volume at the specified
isovalue.
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[faces,vertices] = extractIsosurface(medVol.Voxels,isovalue);

The vertices output provides the intrinsic ijk-coordinates of the surface points, in voxels. Create a
triangulation of the vertices in intrinsic coordinates.

triInstrinsic = triangulation(double(faces),double(vertices));

If you display the surface defined by vertices in intrinsic coordinates, the femur surface appears
squished. Intrinsic coordinates do not account for the real-world voxel dimensions, and the voxels in
this example are larger in the third dimension than in the first two dimensions.

viewerIntrinsic = viewer3d;
obj = images.ui.graphics3d.Surface(viewerIntrinsic, ...
    Data=triInstrinsic, ...
    Color=[0.88 0.84 0.71], ...
    Alpha=0.9);
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Transform Vertices into Patient Coordinates

To accurately represent the femur surface points, transform the ijk-coordinates in vertices to the
patient coordinate system defined by the medicalref3d object, R. The X, Y, and Z outputs define the
xyz-coordinates of the surface points, in millimeters.

I = vertices(:,1);
J = vertices(:,2);
K = vertices(:,3);

[X,Y,Z] = intrinsicToWorld(R,I,J,K);
verticesPatientCoords = [X Y Z];

Create a triangulation of the transformed vertices, verticesPatientCoords. Maintain the original
connectivity defined by faces.

triPatient = triangulation(double(faces),double(verticesPatientCoords));

Display the surface defined by the transformed patient coordinates. The femur surface no longer
appears squished.

viewerPatient = viewer3d;
obj = images.ui.graphics3d.Surface(viewerPatient, ...
    Data=triPatient, ...
    Color=[0.88 0.84 0.71], ...
    Alpha=0.9);
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Create STL File

Check the number of vertices in the surface, which corresponds to the length of the Points property.

triPatient

triPatient = 
  triangulation with properties:

              Points: [21950×3 double]
    ConnectivityList: [43896×3 double]

You can reduce the number of triangles required to represent a surface, while preserving the shape
of the associated object, by using the reducepatch function. Reduce the number of triangles in the
femur surface by 50%. The reducepatch function returns a structure with fields faces and
vertices.

pReduced = reducepatch(faces,verticesPatientCoords,0.5);
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Create a triangulation of the reduced surface. The number of vertices, specified by the Points
property, is approximately one-half of the number of vertices in triPatient.

triReduced = triangulation(double(pReduced.faces),double(pReduced.vertices))

triReduced = 
  triangulation with properties:

              Points: [10976×3 double]
    ConnectivityList: [21948×3 double]

Display the reduced surface to verify that the shape of the femur is preserved.

viewerPatient = viewer3d;
obj = images.ui.graphics3d.Surface(viewerPatient, ...
    Data=triReduced, ...
    Color=[0.88 0.84 0.71], ...
    Alpha=0.9);

Write the surface data to an STL format file by using the stlwrite function.
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Name = "Femur.stl";
stlwrite(triReduced,Name)

You can use the STL model file as input to most commercial 3-D printers to generate a physical 3-D
model of the femur. This image shows a 3-D print of the STL file.

References

[1] Medical Segmentation Decathlon. "Liver." Tasks. Accessed May 10, 2018. http://
medicaldecathlon.com/.

The Medical Segmentation Decathlon data set is provided under the CC-BY-SA 4.0 license. All
warranties and representations are disclaimed. See the license for details.

See Also
Apps
Medical Image Labeler
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Functions
extractIsosurface | stlwrite | triangulation | patch | reducepatch

Objects
medicalref3d | medicalVolume

Related Examples
• “Display Medical Image Volume in Patient Coordinate System” on page 3-21
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Medical Image-Based Finite Element Analysis of Spine

This example shows how to estimate bone stress and strain in a vertebra bone under axial
compression using finite element (FE) analysis.

Bones experience mechanical loading due to gravity, motion, and muscle contraction. Estimating the
stresses and strains within bone tissue can help predict bone strength and fracture risk. This example
uses image-based FE analysis to predict bone stress and strain within a vertebra under axial
compression. Image-based FE uses medical images, such as computed tomography (CT) scans, to
generate the geometry and material properties of the FE model.

In this example, you create and analyze a 3-D model of a single vertebra under axial loading using
this workflow:

1 Segment vertebra from CT scan on page 3-39.
2 Extract vertebra geometry and generate FE mesh on page 3-40.
3 Assign material properties on page 3-43.
4 Apply loading and solve model on page 3-44.
5 Analyze results on page 3-45.

Download Data

This example uses a CT scan saved as a directory of DICOM files. The scan is part of a data set that
contains three CT volumes. Run this code to download the data set from the MathWorks website as a
zip file and unzip the file. The total size of the data set is approximately 81 MB.

zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalVolumeDICOMData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)

After you download and unzip the data set, the scan used in this example is available in the
dataFolder directory.

dataFolder = fullfile(filepath,"MedicalVolumeDICOMData","LungCT01");

Segment Vertebra from CT Scan

This example uses a binary segmentation mask of one vertebra in the spine. The mask was created by
segmenting the spine from a chest CT scan using the Medical Image Labeler app. For an example
of how to segment medical image volumes in the app, see “Label 3-D Medical Image Using Medical
Image Labeler” on page 5-10.
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The segmentation mask is attached to this example as a supporting file. Load the mask as a
medicalVolume object.

labelVol = medicalVolume("LungCT01.nii.gz");

The VolumeGeometry property of a medical volume object contains a medicalref3d object that
defines the patient coordinate system for the scan. Extract the medicalref3d object for the mask
into a new variable, R.

R = labelVol.VolumeGeometry;

Extract Vertebra Geometry and Generate FE Mesh

Extract Isosurface of Vertebra Mask

Calculate the isosurface faces and vertices for the vertebra mask by using the extractIsosurface
function. The vertices coordinates are in the intrinsic coordinate system defined by rows, columns,
and slices.

isovalue = 1;
[faces,vertices] = extractIsosurface(labelVol.Voxels,isovalue);
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Transform vertices to the patient coordinate system defined by R by using the intrinsicToWorld
object function. The X, Y, and Z outputs define the xyz-coordinates of the surface points, in
millimeters.

I = vertices(:,1);
J = vertices(:,2);
K = vertices(:,3);

[X,Y,Z] = intrinsicToWorld(R,I,J,K);
verticesPatient = [X Y Z];

Convert the vertex coordinates to meters.

verticesPatientMeters = verticesPatient.*10^-3;

Display the vertebral isosurface as a triangulated Surface object.

triangul = triangulation(double(faces),double(verticesPatientMeters));
viewer = viewer3d;
surface = images.ui.graphics3d.Surface(viewer,data=triangul,Color=[1 0 0],Alpha=1);

Create PDE Model Geometry

Create a general PDEModel model container for a system of three equations. A general model allows
you to assign spatially varying material properties based on bone density.

model = createpde(3);
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Specify the geometry for the model by using the geometryFromMesh (Partial Differential Equation
Toolbox) object function, with the isosurface in patient coordinates as input.

geometryFromMesh(model,verticesPatientMeters',faces');
pdegplot(model,FaceLabels="on")

Generate Mesh from Model Geometry

Specify the maximum edge length for the FE mesh elements. This example uses a max edge length of
1.6 mm, which was determined using a mesh convergence analysis.

hMax = 0.0016;

Generate the mesh from the model geometry. Specify the maximum edge length, and specify that the
minimum edge length is half of the maximum edge length. The elements are quadratic tetrahedra.

msh = generateMesh(model,Hmax=hMax,Hmin=hMax/2);
pdemesh(model);
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Assign Material Properties

Bone material properties vary based on spatial location and direction:

• Spatial location — Local regions with greater bone density are stiffer than low density regions.
• Direction — Bone stiffness depends on the loading direction. This example models bone using

transverse isotropy. A transversely isotropic material is stiffer in the axial direction versus in the
transverse plane, and is uniform within the transverse plane.

In this example, you assign spatially varying, transversely isotropic linear elastic material properties.

Extract HU Values Within Vertebra Mask

To assign spatially varying material properties, you need to map CT intensity values to FE mesh
coordinates.

Load the original, unsegmented CT scan using a medicalVolume object. The medicalVolume object
automatically converts the intensity to Hounsfield units (HU). The HU value is a standard for
measuring radiodensity.

DCMData = medicalVolume(dataFolder);

Extract the indices and intensities of CT voxels inside the vertebra mask.

trueIdx = find(labelVol.Voxels==1);
HUVertebra = double(DCMData.Voxels(trueIdx));
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Convert the linear indices in trueIdx into subscript indices, in units of voxels.

[row,col,slice] = ind2sub(size(labelVol.Voxels),trueIdx);

Transform the subscript indices into patient coordinates and convert the coordinates from millimeters
to meters.

[X2,Y2,Z2] = intrinsicToWorld(R,col,row,slice);
HUVertebraMeters = [X2 Y2 Z2].*10^-3;

Map HU Values from CT Voxels to Mesh Nodes

The FE node coordinates are scattered and not aligned with the CT voxel grid. Create a
scatteredInterpolant object to define the 3-D interpolation between the voxel grid and FE nodes.

F = scatteredInterpolant(HUVertebraMeters,HUVertebra);

Specify Coefficients

Specify the PDE coefficients for the model. In this structural analysis, the c coefficient defines the
material stiffness of the model, which is inversely related to compliance. To define a spatially varying
c coefficient in Partial Differential Equation Toolbox™, represent c in function form. In this example,
the HU2TransverseIsotropy on page 3-49 helper function defines transversely isotropic material
properties based on bone density. Bone density is calculated for a given location using the scattered
interpolant F. The helper function is wrapped in an anonymous function, ccoeffunc, which passes
the location and state structures to HU2TransverseIsotropy. The FE solver automatically
computes location and state structure arrays and passes them to your function during the
simulation.

ccoeffunc = @(location,state) HU2TransverseIsotropy(location,state,F);
specifyCoefficients(model,'m',0, ...
    'd',0, ...
    'c',ccoeffunc, ...
    'a',0, ...
    'f',[0;0;0]);

Apply Loading and Solve Model

To simulate axial loading of the vertebra, fix the bottom surface and apply a downward load to the top
surface. To simulate distributed loading, the load is applied as a pressure.

Identify the faces in the model geometry to apply the boundary conditions. In this example, the faces
were identified using visual inspection of the plot created above using pdegplot.

bottomSurfaceFace = 1;
topSurfaceFace = 250;

Specify the total force to apply, in newtons.

forceInput = -3000;

Estimate the area of the top surface.

nf2=findNodes(model.Mesh,"region",Face=topSurfaceFace);
positions = model.Mesh.Nodes(:,nf2)';
surfaceShape = alphaShape(positions(:,1:2));
faceArea = area(surfaceShape);
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Calculate the pressure magnitude as a function of force and area, in pascals.

inputPressure_Pa = forceInput/faceArea;

Apply the boundary conditions.

applyBoundaryCondition(model,"dirichlet",Face=bottomSurfaceFace,u=[0,0,0]);            
applyBoundaryCondition(model,"neumann",Face=topSurfaceFace,g=[0;0;inputPressure_Pa]);

Solve the model. The output is a StationaryResults (Partial Differential Equation Toolbox) object
that contains nodal displacements and their gradients.

Rs = solvepde(model);

Analyze Results

View the results of the simulation by plotting the axial displacement, stress, and strain within the
model.

Displacement

Plot axial displacement, in millimeters, for the full model by using the pdeplot3D function.

Uz = Rs.NodalSolution(:,3)*10^3;
pdeplot3D(model,"ColorMapData",Uz)
clim([-0.15 0])
title("Axial Displacement (mm)")
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Plot displacement in a transverse slice at the midpoint of vertebral height.

Create a rectangular grid that covers the geometry of the transverse (xy) slice with spacing of 1 mm
in each direction. The x and y vectors define the spatial limits and spacing in the transverse plane,
and z is a scalar the provides the midpoint of vertebral height. The Xg, Yg, and Zg variables define
the grid coordinates.

x = min(msh.Nodes(1,:)):0.001:max(msh.Nodes(1,:));
y = min(msh.Nodes(2,:)):0.001:max(msh.Nodes(2,:));
z = min(msh.Nodes(3,:))+0.5*(max(msh.Nodes(3,:))-min(msh.Nodes(3,:)));

[Xg,Yg] = meshgrid(x,y);
Zg = z*ones(size(Xg));

Interpolate normal axial displacement onto the grid coordinates by using the
interpolateSolution (Partial Differential Equation Toolbox) object function. Convert
displacement from meters to millimeters, and reshape the displacement vector to the grid size.

U = interpolateSolution(Rs,Xg,Yg,Zg,3);
U = U*10^3;
Ug = reshape(U,size(Xg));

Plot axial displacement in the transverse slice.

surf(Xg,Yg,Ug,LineStyle="none")
axis equal
grid off
view(0,90)
colormap("turbo")
colorbar
clim([-0.15 0])
title("Axial Displacement (mm)")
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Stress

In a structural analysis, stress is the product of the c coefficient and the gradients of displacement.
Calculate normal stresses at the transverse slice grid coordinates by using the evaluateCGradient
(Partial Differential Equation Toolbox) object function.

[cgradx,cgrady,cgradz] = evaluateCGradient(Rs,Xg,Yg,Zg,3);

Convert normal axial stress to megapascals, and reshape the stress vector to the grid size.

cgradz = cgradz*10^-6;
cgradzg = reshape(cgradz,size(Xg));

Plot the normal axial stress in the transverse slice.

surf(Xg,Yg,cgradzg,LineStyle="none");
axis equal
grid off
view(0,90)
colormap("turbo")
colorbar
clim([-10 1])
title("Axial Stress (MPa)")
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Strain

In a structural analysis, strain is the gradient of the displacement result. Extract the normal strain at
the transverse slice grid coordinates by using the evaluateGradient (Partial Differential Equation
Toolbox) object function.

[gradx,grady,gradz] = evaluateGradient(Rs,Xg,Yg,Zg,3);

Reshape the axial strain vector to the grid size.

gradzg = reshape(gradz,size(Xg));

Plot the axial strain in the transverse slice.

surf(Xg,Yg,gradzg,LineStyle="none");
axis equal
grid off
view(0,90)
colormap("turbo")
colorbar
clim([-0.008 0])
title("Axial Strain")
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Helper Functions

The HU2TransverseIsotropy helper function specifies transverse isotropic material properties
using these steps:

• Map voxel intensity to Hounsfield units (HU) at nodal locations using the
scatteredInterpolant object, F.

• Convert HU to CT density using a linear calibration equation from [1 on page 3-51].
• Convert CT density to elastic modulus in the axial direction, E3, and in the transverse plane, E12,

as well as the bulk modulus, G, using density-elasticity relationships from [2 on page 3-51]. The
Poisson's ratio in the axial direction, v3, and transverse plane, v12, are also assigned based on
[2].

• Define the 6-by-6 compliance matrix for transverse isotropy by using the
elasticityTransOrthoC3D on page 3-50 helper function.

• Convert the 6-by-6 compliance, or c-matrix, to the vector form required by Partial Differential
Equation Toolbox by using the SixMat2NineMat on page 3-50 and SquareMat2CCoeffVec on
page 3-51 helper functions.

function ccoeff = HU2TransverseIsotropy(location,state,F)
    HU = F(location.x,location.y,location.z);
    rho = 5.2+0.8*HU;
    E3 = -34.7 + 3.230.*rho;
    E12 = 0.333*E3;
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    v12 = 0.104;
    v3 = 0.381;
    G = 0.121*E3;

    ccoeff = zeros(45,length(location.x));
    for i = 1:length(location.x)
        cMatrix = elasticityTransOrthoC3D(E12(i),E3(i),v12,v3,G(i));
        nineMat = SixMat2NineMat(cMatrix);
        ccoeff(:,i) = SquareMat2CCoeffVec(nineMat);
    end
end

The elasticityTransOrthoC3D helper function defines the 6-by-6 compliance matrix for a
transversely isotropic linear elastic material based on the elastic moduli, E12 and E3, bulk modulus,
G, and Poisson's ratios, v12 and v3. The helper function converts all modulus values from
megapascals to pascals before computing the compliance matrix.

function C = elasticityTransOrthoC3D(E12,E3,v12,v3,G)
    E12 = E12*10^6;
    E3 = E3*10^6;
    G = G*10^6;
    v_zp = (E3*v3)/E12;
    
    C = zeros(6,6);
    C(1,1) = 1/E12;
    C(1,2) = -v12/E12;
    C(1,3)= -v_zp/E3;
    C(2,1) = C(1,2);
    C(2,2) = 1/E12;
    C(2,3) = -v_zp/E3;
    C(3,1) = -v3/E12;
    C(3,2) = C(2,3);
    C(3,3) = 1/E3;
    C(4,4) = 1/(2*G);
    C(5,5) = 1/(2*G);
    C(6,6) = (1+v12)/E12;
    
    C=inv(C);

end

The SixMat2NineMat helper function converts a 6-by-6 c coefficient matrix in Voigt notation to a 9-
by-9 matrix corresponding to expanded form.

function nineMat = SixMat2NineMat(sixMat)

    for i = 1:6
        nineVecs(i,:) = sixMat(i,[1 6 5 6 2 4 5 4 3]);
    end
    
    nineMat = [ nineVecs(1,:); ...
        nineVecs(6,:); ...
        nineVecs(5,:); ...
    

3 Display and Volume Rendering

3-50



        nineVecs(6,:); ...
        nineVecs(2,:); ...
        nineVecs(4,:); ...
    
        nineVecs(5,:); ...
        nineVecs(4,:); ...
        nineVecs(3,:)];

end

The SquareMat2CCoeffVec converts a 9-by-9 c coefficient matrix into vector form as required by
Partial Differential Equation Toolbox. This helper function creates a 45-element vector, corresponding
to the "3N(3N+1)/2-Element Column Vector c, 3-D Systems" case in “c Coefficient for
specifyCoefficients” (Partial Differential Equation Toolbox).

function c45Vec = SquareMat2CCoeffVec(nineMat)

    C11 = [nineMat(1,1) nineMat(1,2) nineMat(2,2) nineMat(1,3) nineMat(2,3) nineMat(3,3)];
    C12 = [nineMat(1,4) nineMat(2,4) nineMat(3,4) nineMat(1,5) nineMat(2,5) nineMat(3,5) ...
        nineMat(1,6) nineMat(2,6) nineMat(3,6)];
    C13 = [nineMat(1,7) nineMat(2,7) nineMat(3,7) nineMat(1,8) nineMat(2,8) nineMat(3,8) ...
        nineMat(1,9) nineMat(2,9) nineMat(3,9)];
    C22 = [nineMat(4,4) nineMat(4,5) nineMat(5,5) nineMat(4,6) nineMat(5,6) nineMat(6,6)];
    C23 = [nineMat(4,7) nineMat(5,7) nineMat(6,7) nineMat(4,8) nineMat(5,8) nineMat(6,8) ...
        nineMat(4,9) nineMat(5,9) nineMat(6,9)];
    C33 = [nineMat(7,7) nineMat(7,8) nineMat(8,8) nineMat(7,9) nineMat(8,9) nineMat(9,9)];
    c45Vec  = [C11 C12 C22 C13 C23 C33]';

end
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See Also
Medical Image Labeler | medicalVolume | intrinsicToWorld | scatteredInterpolant |
createpde | geometryFromMesh | solvepde | StationaryResults

Related Examples
• “Medical Image Coordinate Systems” on page 1-16
• “Label 3-D Medical Image Using Medical Image Labeler” on page 5-10
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• “Create STL Surface Model of Femur Bone for 3-D Printing” on page 3-31
• “c Coefficient for specifyCoefficients” (Partial Differential Equation Toolbox)
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Image Preprocessing and Augmentation

• “Medical Image Preprocessing” on page 4-2
• “Medical Image Registration” on page 4-5
• “Register Multimodal Medical Image Volumes with Spatial Referencing” on page 4-9
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Medical Image Preprocessing
In this section...
“Background Removal” on page 4-2
“Denoising” on page 4-2
“Resampling” on page 4-2
“Registration” on page 4-3
“Intensity Normalization” on page 4-3
“Preprocessing in Advanced Workflows” on page 4-4

Image preprocessing prepares data for a target workflow. The main goals of medical image
preprocessing are to reduce image acquisition artifacts and to standardize images across a data set.
Your exact preprocessing requirements depend on the modality and procedure used to acquire data,
as well as your target workflow. Some common preprocessing steps include background removal,
denoising, resampling, registration, and intensity normalization.

Background Removal
Background removal involves segmenting the region of interest from the image background. By
limiting the image to the region of interest, you can improve the efficiency and accuracy of your
target workflow. One example of background removal is skull stripping, which removes the skull and
other background regions from MRI images of the brain. Background removal typically consists of
applying a mask of the region of interest that you create using morphological operations or other
segmentation techniques. For more information about morphological operations, see “Types of
Morphological Operations”.

To perform background removal, multiply the mask image and the original image. For example,
consider a grayscale image, im, and a mask image, mask, that is the same size as im and has a value
of 1 for every element in the region of interest and 0 for each element of the background. This code
returns a new image, imROI, in which the elements in the region of interest have the same values as
in im, and the background elements all have values of 0.

imROI = im.*mask;

Denoising
Medical imaging modalities are susceptible to noise, which introduces random intensity fluctuations
in an image. To reduce noise, you can filter images in the spatial and frequency domains. Medical
Imaging Toolbox provides the specklefilt function, which reduces the speckle noise common in
ultrasound images. For additional image filtering tools, see “Image Filtering” in Image Processing
Toolbox. You can also denoise medical image data using deep learning. For details, see “Train and
Apply Denoising Neural Networks”.

Resampling
Use resampling to change the pixel or voxel size of an image without changing its spatial limits in the
patient coordinate system. Resampling is useful for standardizing image resolution across a data set
that contains images from multiple scanners.
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To resample 3-D image data in a medicalVolume object, use the resample object function. Using
the resample object function maintains the spatial referencing of the volume.

To resample a 2-D medical image, you can use the imresize function with a target number of
columns and rows. For example, this code shows how to resample the pixel data in the
medicalImage object medImg to a target pixel size, specified by targetPixelSpacing.

ratios = medImg.PixelSpacing./targetPixelSpacing;
targetSize = ceil(ratios.*size(medImg.Pixels)); % in pixels
resamplePixels = imresize(medImg.Pixels,targetSize);

Define the spatial referencing of the original and resampled images by using the imref2d object.

originalR = imref2d(size(medImg.Pixels),medImg.PixelSpacing(1),medImg.PixelSpacing(2));
resampledR = imref2d(size(resamplePixels),targetPixelSpacing(1),targetPixelSpacing(2));

Registration
You can use image registration to standardize the spatial alignment of 2-D or 3-D medical images in a
data set. Registration can be useful for aligning images of different patients, or images of the same
patient acquired at different times, on different scanners, or using different imaging modalities. For
more details, see “Medical Image Registration” on page 4-5.

Intensity Normalization
Intensity normalization standardizes the range of image intensity values across a data set. Typically,
you perform this process in two steps. First, clip intensities to a smaller range. Second, normalize the
clipped intensity range to the range of the image data type, such as [0, 1] for double or [0, 255] for
uint8. Whereas visualizing image data using a display window changes how you view the data,
intensity normalization actually updates the image values.

One normalization strategy is to rescale the intensity values within each image relative to the
minimum and maximum values in the image. For example, this code uses the rescale function to
limit the intensities in the image im to the 0.5 and 99.5 percentile values, and to rescale the values to
the range [0, 1]:

imMax = prctile(im(:),99.5);
imMin = prctile(im(:),0.5);
imNormalized = rescale(im,0,1,InputMin=imMin,InputMax=imMax);

Another strategy is to rescale values to the same intensity range across images. In CT imaging,
intensity windowing limits intensity values, in Hounsfield units (HU), to a suitable range for the tissue
of interest. HU is a standard CT density scale defined by the density of air (–1000 HU) and water (0
HU). The medicalVolume object automatically rescales the data returned in the Voxels property
for DICOM files that define the RescaleIntercept and RescaleSlope metadata attributes. You
can find suggested intensity windows for your application in clinical guidelines or from your scanner
manufacturer. For example, to segment lungs from a chest CT, you might use the range [–1200, 600]
HU, and to segment bone, which is more dense, you might use the range [–1400, 2400]. This figure
shows a transverse slice of a chest CT with no intensity windowing, a "lung" intensity window, and a
"bone" intensity window.
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This code applies intensity windowing to the image stored in the DICOM file dicomFile, assuming
the values of medVol.Voxels are in units of HU:

medVol = medicalVolume(dicomFile);
lungWindow = [-1200 600];
imWindowed = rescale(medVol.Voxels,0,1,InputMin=lungwin(1),InputMax=lungwin(2));

Preprocessing in Advanced Workflows
For an example that preprocesses image data as part of a deep learning workflow, see “Brain MRI
Segmentation Using Pretrained 3-D U-Net Network” on page 6-24.

See Also
specklefilt | resample | rescale | medicalVolume

Related Examples
• “Register Multimodal Medical Image Volumes with Spatial Referencing” on page 4-9
• “Brain MRI Segmentation Using Pretrained 3-D U-Net Network” on page 6-24
• “Segment Lungs from CT Scan Using Pretrained Neural Network” on page 6-14

More About
• “Types of Morphological Operations”
• “Train and Apply Denoising Neural Networks”
• “Medical Image Registration” on page 4-5
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Medical Image Registration
Medical image registration is the process of aligning multiple medical images, volumes, or surfaces to
a common coordinate system. In medical imaging, you may need to compare scans of multiple
patients or scans of the same patient taken in different sessions under different conditions. Use
medical image registration as a preprocessing step to align the medical images to a common
coordinate system before you analyze them.

Scenarios for Medical Image Registration
Classification by Type of Misalignment

• Translation registration - Required when the two images, volumes, or surfaces differ by a global
shift common to all pixels, voxels, or points.

• Rigid registration - Required when the two images, volumes, or surfaces differ by a global shift
and a global rotation common to all pixels, voxels, or points.

• Similarity registration - Required when the two images, volumes, or surfaces differ by a global
shift, a global rotation, and a global scale factor common to all pixels, voxels, or points.

• Affine registration - Required when the two images, volumes, or surfaces differ by a global shift, a
global rotation, a global scale factor, and a global shear factor common to all pixels, voxels, or
points.
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• Deformable registration (also known as non-rigid registration) - Required when the images,
volumes, or surfaces differ by local transformations specific to certain pixels, voxels, or points.

Classification by Type of Input

• Image registration - Aligns 2-D grayscale images.
• Volume registration - Aligns 3-D intensity volumes.
• Surface registration - Aligns surfaces extracted from 3-D intensity volumes.
• Groupwise registration - Aligns slices in a series of 2-D medical images, such as a timeseries, to

reduce sliding motion between the slices.

Functions for Medical Image Registration
Medical Imaging Toolbox provides various functions for medical image registration.

Function Type of
Misalignment

Type of Input Function Details Method

imregister Translation

Rigid

Similarity

Affine

2-D grayscale
images

3-D intensity
volumes

Specify
configuration using
imregconfig.
Transform
returned by
imregtform.

Optimization-based
technique. Regular
step gradient
descent optimizer
with mean squares
metric for
monomodal
configuration. One-
plus-one
evolutionary
optimizer with
Mattes mutual
information metric
for multimodal
configuration.

4 Image Preprocessing and Augmentation

4-6



Function Type of
Misalignment

Type of Input Function Details Method

imregicp Translation

Rigid

Surfaces Transform
returned by
function itself.

Optimization-based
technique. Uses
the iterative
closest point (ICP)
algorithm.

imregmtb Translation 2-D grayscale
images

3-D RGB images

Transform
returned by
function itself.

Fast registration
technique. Uses
median threshold
bitmap (MTB)
method. Suitable
for monomodal and
multimodal
images.

imregmoment Translation

Rigid

Similarity

2-D grayscale
images

3-D intensity
volumes

Transform
returned by
function itself.

Fast registration
technique. Uses
moment of mass
method, with the
option to also use
the median
threshold bitmap
(MTB) method.
Suitable for
monomodal and
multimodal images
and volumes.

imregdemons Deformable 2-D grayscale
images

3-D intensity
volumes

Displacement field
returned by
function itself.

Deformable
registration
technique. Uses a
diffusion-based
Demons algorithm.

imregdeform Deformable 2-D grayscale
images

3-D intensity
volumes

Displacement field
returned by
function itself.

Deformable
registration
technique. Uses
the isotropic total
variation
regularization
method.

imreggroupwise Deformable 3-D image series
consisting of 2-D
slices

Does not require a
reference image.
Displacement field
returned by
function itself.

Groupwise
registration
technique. Uses
the isotropic total
variation
regularization
method.
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Function Type of
Misalignment

Type of Input Function Details Method

imregcorr Translation

Rigid

Similarity

2-D grayscale
images

3-D RGB images

Function returns
only the transform.
Use imwarp to
apply the
transformation and
get the registered
image.

FFT-based
technique. Uses
the phase
correlation
method.

See Also
Functions
imregister | imregtform | imregconfig | imregicp | imregmtb | imregmoment | imregdemons
| imregdeform | imreggroupwise | imregcorr | imwarp

Related Examples
• “Register Multimodal Medical Image Volumes with Spatial Referencing” on page 4-9
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Register Multimodal Medical Image Volumes with Spatial
Referencing

This example shows how to align two medical image volumes using moment-of-mass-based
registration.

Multimodal image registration aligns images acquired using different imaging modalities, such as
MRI and CT. Even when acquired for the same patient and region of interest, multimodal images can
be misaligned due to differences in patient positioning (translation or rotation) and voxel size
(scaling). Different imaging modalities often have different voxel sizes due to scanner variability and
concerns about scan time and radiation dose. The imregmoment function enables fast registration of
3-D image volumes, including multimodal images.

Medical images have an intrinsic coordinate system defined by rows, columns, and slices and a
patient coordinate system that describes the real-world position and voxel spacing. You can use the
medicalVolume object to import and manage the spatial referencing of a medical image volume. To
register images with different voxel sizes using imregmoment, you must use spatial referencing to
register the images in the patient coordinate system. During registration, imregmoment aligns a
moving image with a fixed image, and then resamples the aligned image in the intrinsic coordinates
of the fixed image. The registered volumes share one patient coordinate system and have the same
number of rows, columns, and slices.

In this example, you use medicalVolume and imregmoment to register multimodal MRI and CT
images of the head.

Load Images

The data used in this example is a modified version of the 3-D CT and MRI data sets from The
Retrospective Image Registration Evaluation (RIRE) Dataset, provided by Dr. Michael Fitzpatrick. For
more information, see the RIRE Project homepage. The modified data set contains one CT scan and
one MRI scan stored in the NRRD file format. The size of the entire data set is approximately 35 MB.
Download the data set from the MathWorks® website, then unzip the folder.

zipFile = matlab.internal.examples.downloadSupportFile("medical", ...
    "MedicalRegistrationNRRDdata.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)

In image registration, consider one image to be the fixed image and the other image to be the moving
image. The goal of registration is to align the moving image with the fixed image. In this example, the
fixed image is a T1 weighted MRI image. The moving image is a CT image from the same patient. The
images are stored in the NRRD file format.

Use medicalVolume to read the MRI image. By looking at the Voxels and VoxelSpacing
properties, you can determine that the MRI volume is a 256-by-256-by-26 voxel array, where each
voxel is 1.25-by-1.25-by-4.0 mm.

filenameMRI = fullfile(filepath,"supportfilesNRRD","Patient007MRT1.nrrd");
fixedMRIVolume = medicalVolume(filenameMRI)

fixedMRIVolume = 
  medicalVolume with properties:
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                 Voxels: [256×256×26 single]
         VolumeGeometry: [1×1 medicalref3d]
           SpatialUnits: "unknown"
            Orientation: "unknown"
           VoxelSpacing: [1.2500 1.2500 4]
           NormalVector: [0 0 1]
       NumCoronalSlices: []
      NumSagittalSlices: []
    NumTransverseSlices: []
           PlaneMapping: ["unknown"    "unknown"    "unknown"]
               Modality: "unknown"
          WindowCenters: []
           WindowWidths: []

Import the CT image. The size of each voxel in the CT image is 0.65-by-0.65-by-4 mm, which is
smaller than in the MRI image.

filenameCT = fullfile(filepath,"supportfilesNRRD","Patient007CT.nrrd");
movingCTVolume = medicalVolume(filenameCT)

movingCTVolume = 
  medicalVolume with properties:

                 Voxels: [512×512×28 single]
         VolumeGeometry: [1×1 medicalref3d]
           SpatialUnits: "unknown"
            Orientation: "unknown"
           VoxelSpacing: [0.6536 0.6536 4]
           NormalVector: [0 0 1]
       NumCoronalSlices: []
      NumSagittalSlices: []
    NumTransverseSlices: []
           PlaneMapping: ["unknown"    "unknown"    "unknown"]
               Modality: "unknown"
          WindowCenters: []
           WindowWidths: []

Extract the image voxel data from the Voxels property of the medicalVolume objects.

fixedMRIVoxels = fixedMRIVolume.Voxels;
movingCTVoxels = movingCTVolume.Voxels;

Display Unregistered Images

Use the imshowpair function to judge image alignment. First, calculate the location of the middle
slice of each volume. The VolumeGeometry property of the medical volume object contains a
medicalref3d object, which specifies spatial details about the volume. Use the VolumeSize
property of each medicalref3d object to calculate the location of the middle slice of the
corresponding volume, in voxels.

fixedVolumeSize = fixedMRIVolume.VolumeGeometry.VolumeSize;
movingVolumeSize = movingCTVolume.VolumeGeometry.VolumeSize;

centerFixed = fixedVolumeSize/2;
centerMoving = movingVolumeSize/2;
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Define spatial referencing for the 2-D slices using imref2d. Specify the size, in voxels, and voxel
spacing, in millimeters, of the transverse slices.

fixedVoxelSpacing = fixedMRIVolume.VoxelSpacing;
movingVoxelSpacing = movingCTVolume.VoxelSpacing;

Rfixed2D = imref2d(fixedVolumeSize(1:2),fixedVoxelSpacing(2),fixedVoxelSpacing(1));
Rmoving2D = imref2d(movingVolumeSize(1:2),movingVoxelSpacing(2),movingVoxelSpacing(1)); 

Display the image slices in the patient coordinate system using imshowpair. Plot the slice in the
third spatial dimension, which corresponds to the transverse anatomical plane. The MRI slice is
magenta, and the CT slice is green.

figure
imshowpair(movingCTVoxels(:,:,centerMoving(3)), ...
   Rmoving2D, ...
   fixedMRIVoxels(:,:,centerFixed(3)), ...
   Rfixed2D)
title("Unregistered Transverse Slice")
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You can also display the volumes as 3-D objects. Create a viewer3d object, in which you can display
multiple volumes.

viewerUnregistered = viewer3d(BackgroundColor="black",BackgroundGradient="off");

Display the medicalVolume objects as 3-D isosurfaces using volshow. The volshow function uses
medicalVolume properties to display each volume in its respective patient coordinate system.

volshow(fixedMRIVolume,Parent=viewerUnregistered,RenderingStyle="Isosurface",IsosurfaceValue=0.05, ...
    Colormap=[1 0 1],Alphamap=1);
volshow(movingCTVolume,Parent=viewerUnregistered,RenderingStyle="Isosurface",IsosurfaceValue=0.05, ...
    Colormap=[0 1 0],Alphamap=1);
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Register Images

To accurately register volumes with different voxel dimensions, specify the spatial referencing for
each volume using imref3d objects. Create each imref3d object using the volume size in voxels and
the voxel dimensions in millimeters.

Rfixed3d  = imref3d(fixedVolumeSize,fixedVoxelSpacing(2), ...
    fixedVoxelSpacing(1),fixedVoxelSpacing(3));
Rmoving3d = imref3d(movingVolumeSize,movingVoxelSpacing(2), ...
    movingVoxelSpacing(1),movingVoxelSpacing(3));

The imregmoment function sets fill pixels added to the registered volume to 0. To improve the display
of registration results, scale the CT intensities to the range [0, 1], so that the fill value is equal to
the minimum of the image data range.

rescaledMovingCTVoxels = rescale(movingCTVoxels);

Register the volumes using imregmoment, including the imref3d objects as inputs. Specify the
MedianThresholdBitmap name-value argument as true, which is appropriate for multimodal
images.

[geomtform,movingCTRegisteredVoxels] = imregmoment(rescaledMovingCTVoxels,Rmoving3d, ...
    fixedMRIVoxels,Rfixed3d,MedianThresholdBitmap=true);
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The geomtform output is an affinetform3d geometric transformation object. The T property of
geomtform contains the 3-D affine transformation matrix that maps the moving CT volume in its
patient coordinate system to the fixed MRI volume in its patient coordinate system.

geomtform.T

ans = 4×4

    1.0000   -0.0039    0.0013         0
    0.0039    1.0000    0.0063         0
   -0.0014   -0.0063    1.0000         0
   -4.8094  -16.0063   -1.3481    1.0000

The movingRegisteredVoxels output contains the registered CT volume. The imregmoment
function resamples the aligned CT volume in the MRI intrinsic coordinates, so the registered volumes
have the same number of rows, columns, and slices.

whos movingCTRegisteredVoxels fixedMRIVoxels

  Name                            Size                  Bytes  Class     Attributes

  fixedMRIVoxels                256x256x26            6815744  single              
  movingCTRegisteredVoxels      256x256x26            6815744  single              

Create medicalVolume Object for Registered Image

Create a new medicalVolume object that contains the registered voxel data and its spatial
referencing information. You can create a medicalVolume object by specifying a voxel array and a
medicalref3d object. The registered CT volume has the same spatial referencing as the original
MRI volume, so use the medicalref3d object stored in the VolumeGeometry property of
fixedMRIVolume.

R = fixedMRIVolume.VolumeGeometry;
movingRegisteredVolume = medicalVolume(movingCTRegisteredVoxels,R)

movingRegisteredVolume = 
  medicalVolume with properties:

                 Voxels: [256×256×26 single]
         VolumeGeometry: [1×1 medicalref3d]
           SpatialUnits: "unknown"
            Orientation: "unknown"
           VoxelSpacing: [1.2500 1.2500 4]
           NormalVector: [0 0 1]
       NumCoronalSlices: []
      NumSagittalSlices: []
    NumTransverseSlices: []
           PlaneMapping: ["unknown"    "unknown"    "unknown"]
               Modality: "unknown"
          WindowCenters: []
           WindowWidths: []

Display Registered Images

To check the registration results, use imshowpair to view the middle transverse slices of the fixed
and registered volumes. Use the spatial referencing object for the fixed volume.
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imshowpair(movingRegisteredVolume.Voxels(:,:,centerFixed(3)), ...
    Rfixed2D,fixedMRIVoxels(:,:,centerFixed(3)),Rfixed2D)
title("Registered Transverse Slice")

Display the registered volumes as 3-D isosurfaces using volshow. You can zoom and rotate the
display to assess the registration results.

viewerRegistered = viewer3d(BackgroundColor="black",BackgroundGradient="off");
volshow(fixedMRIVolume,Parent=viewerRegistered,RenderingStyle="Isosurface",IsosurfaceValue=0.05, ...
    Colormap=[1 0 1],Alphamap=1);
volshow(movingRegisteredVolume,Parent=viewerRegistered,RenderingStyle="Isosurface",IsosurfaceValue=0.05, ...
    Colormap=[0 1 0],Alphamap=1);
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See Also
imregmoment | medicalref3d | medicalVolume

Related Examples
• “Medical Image Registration” on page 4-5
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Medical Image Labeling

• “Label 2-D Ultrasound Series Using Medical Image Labeler” on page 5-2
• “Label 3-D Medical Image Using Medical Image Labeler” on page 5-10
• “Automate Labeling in Medical Image Labeler” on page 5-20
• “Collaborate on Multi-Labeler Medical Image Labeling Projects” on page 5-28

5



Label 2-D Ultrasound Series Using Medical Image Labeler

This example shows how to label 2-D image data using the Medical Image Labeler app. The
Medical Image Labeler app provides manual, semi-automated, and automated tools for labeling 2-D
medical image data. This example labels the left ventricle in an echocardiogram ultrasound image
series.

Open the Medical Image Labeler

Open the Medical Image Labeler app from the Apps tab on the MATLAB® toolstrip, under Image
Processing and Computer Vision. You can also load the app by using the medicalImageLabeler
command.

Create New Image Labeling Session

To start a new 2-D labeling session, on the app toolstrip, click New Session and select New Image
session (2-D). In the Create a new session folder dialog box, specify a location in which to save the
new session folder by entering a path or selecting Browse and navigating to your desired location. In
the New Session Folder dialog box, specify a name for the folder for this labeling session. Then, select
Create Session.
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Load Image Data into Medical Image Labeler

To load an image into the Medical Image Labeler app, on the app toolstrip, click Import Data.
Then, under Data, select From File. Browse to the location of
heartUltrasoundSequenceVideo.dcm in the same directory as this example file. For an image
session, the imported data file must be a single DICOM or NIfTI file containing a 2-D image or a
series of 2-D images related by time.

The name of the imported image is visible in the Data Browser pane. The no labels symbol  next
to the file name indicates that the image file does not contain any pixel labels. You can import
multiple 2-D image files into an image session. All files imported into a single app session must label
the same regions of interest, such as tumor or ventricle, and are exported together as one
groundTruthMedical object.

Explore the Image Series

The Medical Image Labeler app displays the imported image in the Slice pane. By default, the app
displays the middle frame in the ultrasound series. You can change the displayed frame by using the
scroll bar at the bottom of the Slice pane, or you can click the pane and then press the left and right
arrow keys. The app displays the current frame number out of the total number of frames, such as
58/116. You can zoom in on the current frame using the mouse scroll wheel or the zoom controls that
appear when you pause on the Slice pane.

 Label 2-D Ultrasound Series Using Medical Image Labeler

5-3



Explore the echocardiogram image series to identify the left ventricle. The annotated image shows
the approximate outline of the ventricle to label. Note that all labels in this example have been
created for illustrative purposes only and have not been verified by a clinical professional.

Create Label Definitions

A label definition specifies the name, color, and numeric index of a label. In the Label Definitions
pane, select Create Label Definition to create a label with the default name Label1. To change the
name of the label, click the label and enter a new name. The label name must be a valid MATLAB
variable name with no spaces. For this example, specify the name of the label as LeftVentricle. To
change the default color associated with the label, click the colored square in the label identifier and
select a color from the Color dialog box.
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Use Drawing Tools to Label Regions in Image

To assign pixels to the LeftVentricle label, click the LeftVentricle label in the Label
Definitions pane. You can use the tools on the Draw tab in the app toolstrip to define the region. You
can choose from the Freehand, Assisted Freehand, Polygon, Paint Brush, and Trace Boundary
tools. Label frame 1. When you add the label, the app adds a bar above the slider, using the color
associated with the label, to indicate which frames you have labeled.

In addition to the drawing tools, you can add or refine label regions using the tools in the Automate
tab of the app toolstrip. The app provides automation algorithms including Active Contours,
Adaptive Threshold, Dilate, and Erode. To apply an algorithm, click Algorithm Parameters to
adjust settings, if applicable, and click Run. You can also specify a custom range of frames to process
by specifying a Start frame and an End frame.

Use Interpolation to Speed Up Labeling

You can move through the image series and draw labels frame-by-frame, but the Medical Image
Labeler app also provides interpolation tools in the Draw tab that can help you label an object
between frames. Interpolation is most suitable between frames where the region of interest has a
similar shape and size. In an echocardiogram, the ventricle experiences cycles of contraction, during
which the ventricle rapidly changes in shape, and relaxation, during which the ventricle is relatively
still. Therefore, you can most effectively use interpolation between the start and end of a relaxation
period, such as between frames 20 and 38.

To use interpolation, you must first manually label a region in two frames. Label the ventricle in
frame 20 and frame 38. If the Auto Interpolate button is not active, make sure the labeled region is
selected by clicking Select Drawn Region in the app toolstrip and selecting the labeled region.
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Click Auto Interpolate. The app automatically labels the ventricle in the intermediate frames. The
app adds bars above the slider to indicate all the frames that have labeled pixels, which now appears
as a solid bar from frame 20 to frame 38.

Alternatively, after labeling an ROI on two frames, you can click Manually Interpolate. With this
option, the app opens the Manually Interpolate dialog box. Select the two regions between which you
want to interpolate, Region One and Region Two. To select the first region, use the slider at the
bottom of the dialog box to navigate to frame 20, and then click inside the labeled ventricle. To select
the second region, click Region Two, navigate to frame 38, and click inside the labeled ventricle.
After selecting both regions, click Run to interpolate the label in the intermediate frames.
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After using interpolation, check the individual frames to see if the interpolation created satisfactory
labels. You can manually correct labels using the Paint Brush and Eraser tools. Alternatively, you
can refine the labels using one of the tools in the Automate tab. For example, you can use Active
Contours to grow an ROI in a frame where it does not fill the full area of the ventricle. You can also
undo the interpolation and try interpolating across fewer frames to improve results.

Modify Labels

To refine drawn labels, you can remove label data from individual pixels, from individual frames
within an image series, from an entire image, or from the whole labeling session.

• Remove labels from individual pixels — In the Draw tab, use the Eraser tool.
• Remove labels from one connected region in a frame — Click Select Drawn Region and, in the

Slice pane, select the region from which you want to remove labels. Press Delete, or right-click
and select Delete, to remove labels from the region.

• Remove all labels from a frame — Right-click anywhere on the frame and select Select All. Press
Delete, or right-click and select Delete, to remove all labels from the frame.
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• Remove all labels from an image series — Right-click the file name of the image series in the Data
Browser and select Remove Labels. Removing labels from an image removes all pixel labels for
all label definitions within the file.

• Remove a label from all images within the app session — In the Label Definitions pane, right-
click the label name and select Delete. This deletes the label from the groundTruthMedical
object in the session folder, and removes all pixel labels for the deleted label name in all images in
the session.

Apply Custom Automation Algorithm

You can add a custom automation algorithm to use in the app. On the Automate tab, click Add
Algorithm. Import an existing algorithm by selecting From File, or create a new algorithm using the
provided function or class template. See “Automate Labeling in Medical Image Labeler” on page 5-
20 for an example that applies a custom automation algorithm for 2-D labeling.

Under Slice-Based, select the New option and click Function Template to create a new function
that operates on each 2-D image frame. The app opens the template in the MATLAB editor. Replace
the sample code in the template with the code for your algorithm. Your function must accept two
arguments: each frame as a separate image, and a mask. Your function must also return a mask
image.

When you are done editing the template, save the file. The Medical Image Labeler app
automatically creates a button in the Automate tab of the toolstrip for your function. To test your
function, select it and click Run. By default, the app applies the function to only the current frame.

After testing your function on a single frame, you can run it on all of the frames, or a subset of the
frames. You can run it from the current frame to the end (the highest numbered frame) or from the
current frame back to the beginning (frame 1). You can also specify a range of frames by specifying
the starting frame and the ending frame.

Export Ground Truth Data

For this example, the labels for heartUltrasoundSequenceVideo.dcm are complete when you
have labeled the ventricle in each frame. The app automatically assigns a value of 0 to unlabeled
pixels in the label images saved to the session folder, so you do not need to label the background
manually.

The Medical Image Labeler app automatically saves a groundTruthMedical object as a MAT file
in the session folder. You can also export a groundTruthMedical object, saved as a MAT file, to an
alternate file location from the app. On the Labeler tab, click Export and, under Ground Truth,
select To File.

You can load the exported MAT file into the MATLAB workspace using the load function. The
properties of the groundTruthMedical object, gTruthMed, contain information about the image
data source, label definitions, and location of the saved label images. Display information about the
object and each of its properties using these commands.
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• gTruthMed — Display the properties of the groundTruthMedical object.
• gTruthMed.DataSource — Location of the source of the unlabeled medical images and image

series.
• gTruthMed.LabelDefinitions — Table of information about label definitions.
• gTruthMed.LabelData — Locations of the saved, labeled images.

See Also
Medical Image Labeler | groundTruthMedical

Related Examples
• “Get Started with Medical Image Labeler” on page 1-9
• “Label 3-D Medical Image Using Medical Image Labeler” on page 5-10
• “Automate Labeling in Medical Image Labeler” on page 5-20
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Label 3-D Medical Image Using Medical Image Labeler

This example shows how to label 3-D image data using the Medical Image Labeler app. The Medical
Image Labeler app provides manual, semi-automated, and automated tools for labeling 3-D medical
image data. This example segments a chest CT volume to label a lung tumor region.

Download Data to Label

This example labels chest CT data from a subset of the Medical Segmentation Decathlon data set [1
on page 5-19]. The size of the subset of data is approximately 76 MB. Download the
MedicalVolumNIfTIData.zip file from the MathWorks® website, then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalVolumeNIfTIData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)
dataFolder = fullfile(filepath,"MedicalVolumeNIfTIData");

Open the Medical Image Labeler

Open the Medical Image Labeler app from the Apps tab on the MATLAB® toolstrip, under Image
Processing and Computer Vision. You can also load the app by using the medicalImageLabeler
command.
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Create New Volume Labeling Session

To start a new 3-D labeling session, on the app toolstrip, click New Session and select New Volume
session (3-D). In the Create a new session folder dialog box, specify a location in which to save
the new session folder by entering a path or selecting Browse and navigating to your desired
location. In the New Session Folder dialog box, specify a name for the folder for this labeling
session. Then, select Create Session.

Load Image Data into Medical Image Labeler

To load an image into the Medical Image Labeler app, on the app toolstrip, click Import Data.
Then, under Data, select From File. Browse to the location where you downloaded the data,
specified by the dataFolder workspace variable, and select the file lung_027.nii.gz. For a
Volume Session, the imported data file can be a single DICOM or NIfTI file containing a 3-D image
volume, or a directory containing multiple DICOM files corresponding to a single image volume.

The name of the imported image is visible in the Data Browser pane. The no labels symbol  next
to the file name indicates that the volume does not contain any pixel labels. You can import multiple
3-D image files into a Volume Session. All files imported into a single app session must label the
same regions of interest, such as tumor or lung, and are exported together as one
groundTruthMedical object. Import the other file in the download location, lung_043.nii.gz.

Explore the Image Volume

The Medical Image Labeler app displays a 3-D rendering of the scan in the 3-D Volume pane, and
displays anatomical slice planes in the Transverse, Sagittal, and Coronal panes. You can toggle the

 Label 3-D Medical Image Using Medical Image Labeler

5-11



visibility of the volume display using the Show Volume button on the Labeler tab of the app
toolstrip.

By default, the app displays the center slice in each slice plane. You can change which slice is
displayed by using the scroll bar at the bottom of a slice pane, or you can click the pane and then
press the left and right arrow keys. The app displays the current slice number out of the total number
of slices, such as 132/264, for each slice pane. The app also displays anatomical display markers
indicating the anterior (A), posterior (P), left (L), right (R), superior (S), and inferior (I) directions. You
can zoom in on the current slice pane using the mouse scroll wheel or the zoom controls that appear
when you pause on the slice pane.

You can also navigate between slices in the three planes using crosshair navigation. To turn on the
crosshair indicators, in the Labeler tab of the app toolstrip, select Crosshair Navigation. The
indicators show the relative positions of the slices in the other 2-D views. To navigate slices, pause on

one of the crosshair axes until the cursor changes to the fleur shape, , and then click and drag to
a new position. The other slice views update automatically. To hide the crosshairs, in the app
toolstrip, clear Crosshair Navigation.

By default, the app displays the scan using the Radiological display convention, with the left side of
the patient on the right side of the image. To display the left side of the patient on the left side of the
image, on the app toolstrip, click Display Convention and select Neurological.
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You can adjust the brightness and contrast used to display grayscale image data by using the

Window Level tool in the Labeler tab of the app toolstrip. First, on the app toolstrip, select .
Then, click and hold in any of the slice panes, and drag up and down to increase and decrease the
brightness, respectively, or left and right to increase and decrease the contrast. The updated window

bounds are displayed in the app toolstrip under Window Bounds. Click  to deactivate the
tool. Changing the display window does not modify the image data.

With lung_027.nii.gz selected in the Data Browser pane, explore the chest volume to identify
the tumor region you want to label. The tumor is visible between slices 79 and 105 in the Transverse
slice pane.

Create Label Definitions

A label definition specifies the name, color, and numeric index of a label. In the Label Definitions
pane, select Create Label Definition to create a label with the default name Label1. To change the
name of the label, double-click on the label and type in a new name. The label name must be a valid
MATLAB® variable name with no spaces. For this example, specify the name of the label as tumor.
To change the default color associated with the label, double-click on the colored square in the label
identifier and select a color from the Color dialog box.
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Use Drawing Tools to Label Regions in Image

Click on the tumor label in the Label Definitions pane to assign pixels to the tumor label. You can
use the tools on the Draw tab in the app toolstrip to define the region. You can choose from the
Freehand, Assisted Freehand, Polygon, Paint Brush, and Trace Boundary tools. This example
uses the Paint Brush tool, with Paint by Superpixels enabled, to label the tumor, but you can use
any of the drawing tools. You can draw labels in the Transverse, Sagittal, or Coronal slice panes.
Label slice 79. When you add the label, the app adds a bar above the slider, using the color associated
with the label, to indicate which slices you have labeled.

In addition to the drawing tools, you can add or refine label regions using the tools in the Automate
tab of the app toolstrip. The app provides slice-based automation algorithms including Active
Contours, Adaptive Threshold, Dilate, and Erode, as well as volume-based algorithms including
Filter and Threshold, Smooth Edges, and Otsu's Threshold. To apply a slice-based algorithm,
click Algorithm Parameters to adjust settings if applicable, select an option from the Slice
Direction list, and click Run. You can also specify a custom range of slices to process by specifying a
Start slice and an End slice.

Use Interpolation to Speed Up Labeling

You can move through the image volume and draw labels slice-by-slice. The Medical Image Labeler
app also provides interpolation tools in the Draw tab that can help with labeling an object between
slices.
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To use interpolation, you must first manually label a region on two slices. You have already labeled
the tumor in slice 79. Use the same process to label the tumor in slice 83. If the Auto Interpolate
button is not active, make sure the labeled region is selected by clicking Select Drawn Region in
the app toolstrip and selecting the labeled region.

Click Auto Interpolate. The app automatically labels the tumor in the intermediate slices. The app
adds bars above the slider to indicate all the slices that have labeled pixels, which now appears as a
solid bar from slice 79 to slice 83.

Alternatively, after labeling an ROI on two slices, you can click Manually Interpolate. With this
option, the app opens the Manually Interpolate dialog box. Select the two regions between which you
want to interpolate, Region One and Region Two. To select the first region, use the slider at the
bottom of the dialog box to navigate to slice 79, and then click inside the labeled tumor. To select the
second region, click Region Two, navigate to slice 83, and click inside the labeled tumor. After
selecting both regions, click Run to interpolate the label in the intermediate slices.

 Label 3-D Medical Image Using Medical Image Labeler

5-15



After using interpolation, check the individual slices to see if the interpolation created satisfactory
labels. You can manually correct labels using the Paint Brush and Eraser tools. Alternatively, you
can refine the labels using one of the tools in the Automate tab. For example, you can use Active
Contours to grow an ROI in a slice where it does not fill the full area of the tumor. You can also undo
the interpolation and try interpolating across fewer slices to improve results.

Visualize and Modify Labels

As you draw labels, you can view them as an overlay in the 3-D Volume pane. In the warning
message at the top of the 3-D Volume pane, click Update. Note that Update is only available after
you update the label data in a slice pane. To adjust the opacity of all labels in the session, in the
Labeler tab of the app toolstrip, adjust the Label Opacity slider. To toggle the visibility of an
individual label, in the Label Definitions pane, click the eye symbol  next to the label name.
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To refine drawn labels, you can remove label data from individual pixels, from individual slices within
an image, from an entire image, or from the whole labeling session.

• Remove labels from individual pixels — In the Draw tab, use the Eraser tool.
• Remove labels from one connected region in a slice — Click Select Drawn Region and, in the

slice pane, select the region from which you want to remove labels. Press Delete, or right-click
and select Delete, to remove labels from the region.

• Remove all labels from a slice — Right-click anywhere on the slice and select Select All. Press
Delete, or right-click and select Delete, to remove all labels from the slice.

• Remove all labels from an image volume — Right-click the file name of the image volume in the
Data Browser and select Remove Labels. Removing labels from an image volume removes all
pixel labels for all label definitions within the file.

• Remove a label from all images within the app session — In the Label Definitions pane, right-
click the label name and select Delete. This deletes the label from the groundTruthMedical
object in the session folder, and removes all pixel labels for the deleted label name in all images in
the session.

Apply Custom Automation Algorithm

You can add a custom automation algorithm to use in the app. On the Automate tab, click Add
Algorithm. Import an existing algorithm by selecting From File, or create a new algorithm using the
provided function or class template. See “Automate Labeling in Medical Image Labeler” on page 5-
20 for an example that applies a custom automation algorithm for 2-D labeling.

For this example, under Slice-Based, select the New option and click Function Template to create
a new function that operates on each 2-D image slice. The app opens the template in the MATLAB
editor. Replace the sample code in the template with code that you want to use. Your function must
accept two arguments: each slice as a separate image, and a mask. Your function must also return a
mask image.

When you are done editing the template, save the file. The Medical Image Labeler app
automatically creates a button in the Automate tab toolstrip for your function. To test your function,
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select an option from the Slice Direction list and click Run. By default, the app applies the function
to only the current slice.

After testing your function on a single slice, you can run it on all of the slices, or a subset of the
slices, in the selected direction. You can run it from the current slice to the end (the highest
numbered slice) or from the current slice back to the beginning (slice 1). You can also specify a range
of slices by specifying the starting slice and the ending slice.

Label Next Image Volume

For this example, the labels for lung_027.nii.gz are complete when you have labeled each slice of
the tumor. Medical Image Labeler automatically assigns a value of 0 to unlabeled pixels in the label
images saved to the session folder, so you do not need to label the background manually.

To move to the next volume, select lung_043.nii.gz in the Data Browser pane. Repeat the
labeling process to draw labels on the tumor region in this volume.
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Export Ground Truth Data

The Medical Image Labeler app automatically saves a groundTruthMedical object as a MAT file
in the session folder. You can also export a groundTruthMedical object, saved as a MAT file, to an
alternate file location from the app. On the Labeler tab, click Export and, under Ground Truth,
select To File.

You can load the exported MAT file into the MATLAB workspace using the load function. The
properties of the groundTruthMedical object, gTruthMed, contain information about the image
data source, label definitions, and location of the saved label images. Display information about the
object and each of its properties using these commands.

• gTruthMed — Display the properties of the groundTruthMedical object.
• gTruthMed.DataSource — Location of the source of the unlabeled medical volumes.
• gTruthMed.LabelDefinitions — Table of information about label definitions.
• gTruthMed.LabelData — Locations of the saved, labeled images.

References

[1] Medical Segmentation Decathlon. "Lung." Tasks. Accessed May 10, 2018. http://
medicaldecathlon.com/.

The Lung data set is provided by the Medical Segmentation Decathlon under the CC-BY-SA 4.0
license. All warranties and representations are disclaimed. See the license for details. This example
uses a subset of the original data set consisting of two CT volumes. The labels shown in this example
were created for illustration purposes and have not been verified by a clinician.

See Also
Medical Image Labeler | groundTruthMedical

Related Examples
• “Get Started with Medical Image Labeler” on page 1-9
• “Label 2-D Ultrasound Series Using Medical Image Labeler” on page 5-2
• “Automate Labeling in Medical Image Labeler” on page 5-20
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Automate Labeling in Medical Image Labeler

This example shows how to implement a deep learning automation algorithm for labeling tumors in
breast ultrasound images by using the Medical Image Labeler app.

Semantic segmentation assigns a class label to every pixel in an image. The Medical Image Labeler
app provides manual, semiautomated, and automated tools to label medical images for semantic
segmentation. Using automation, you can create and apply custom segmentation functions that use
image processing or deep learning. For an example that shows how to train the network used in this
example, see “Breast Tumor Segmentation from Ultrasound Using Deep Learning” on page 6-32.

Download Pretrained Network

Create a folder to store the pretrained network and image data set.

dataDir = fullfile(tempdir,"BreastSegmentation");
if ~exist(dataDir,"dir")   
    mkdir(dataDir)
end

Download the pretrained DeepLab v3+ network and test image by using the
downloadTrainedNetwork helper function. The helper function is attached to this example as a
supporting file.

pretrainedNetwork_url = "https://www.mathworks.com/supportfiles/"+ ...
    "image/data/breastTumorDeepLabV3.tar.gz";
downloadTrainedNetwork(pretrainedNetwork_url,dataDir);

Unzip the TAR GZ file completely.

gunzip(fullfile(dataDir,"breastTumorDeepLabV3.tar.gz"),dataDir);
untar(fullfile(dataDir,"breastTumorDeepLabV3.tar"),dataDir);
exampleDir = fullfile(dataDir,"breastTumorDeepLabV3");

Download Image Data

This example uses a subset of the Breast Ultrasound Images (BUSI) data set [1 on page 5-27]. The
BUSI data set contains 2-D ultrasound images stored in the PNG file format. The total size of the data
set is 197 MB. The data set contains 133 normal scans, 487 scans with benign tumors, and 210 scans
with malignant tumors. This example uses images from the tumor groups only. Each ultrasound image
has a corresponding tumor mask image. The tumor mask labels have been reviewed by clinical
radiologists [1].
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Run this code to download the data set from the MathWorks® website and unzip the downloaded
folder.

zipFile = matlab.internal.examples.downloadSupportFile("image", ...
    "data/Dataset_BUSI.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)

The imageDir folder contains the downloaded and unzipped data set.

imageDir = fullfile(filepath,"Dataset_BUSI_with_GT");

Extract a subset of 20 benign tumor images to a new folder, dicomDir. Write the copied images in
the DICOM file format, which the Medical Image Labeler supports.

imds = imageDatastore(fullfile(imageDir,"benign","*).png"));

dicomDir = fullfile(exampleDir,"images");
if ~exist(dicomDir,"dir")   
    mkdir(dicomDir)
    for i = 1:20
        I = imread(imds.Files{i});
        [~,filename,~] = fileparts(imds.Files{i});
        dicomwrite(I,fullfile(exampleDir,"images",filename+".dcm"));
    end
end

Load Data Source Images into Medical Image Labeler

Open the Medical Image Labeler app and create a new 2-D image session.

medicalImageLabeler("Image")

The app launches and opens the Create a new session folder dialog box. In the dialog box, specify a
location to save the new session folder by entering a path or selecting Browse and navigating to your
desired location. Then, select Create Session.

To load the ultrasound images into the app, on the app toolstrip, click Import. Then, under Data,
select From File. Browse to the location of dicomDir. Select all of the files by clicking the first
filename, pressing Shift, and clicking the last filename. Click Open. The app loads the files and lists
the names in the Data Browser pane.
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Create Label Definition

A label definition specifies the name, color, and numeric index of a label. In the Label Definitions
pane, select Create Label Definition to create a label with the default name Label1. To change the
name of the label, click the label and enter a new name. The label name must be a valid MATLAB
variable name with no spaces. For this example, specify the name of the label as tumor.

Create Automation Algorithm

In the Automate tab of the app toolstrip, click Add Algorithm and select New > Function
Template. In the function template, enter the below code for the automation algorithm and click
Save. This example uses the default name for the algorithm, myalgorithm, but you can specify any
name. The automation function must have two inputs, I and MASK.

5 Medical Image Labeling

5-22



• I is the input data source image, which in this example is the ultrasound image. When you run the
algorithm, the app automatically passes the data source image selected in the Data Browser to
the algorithm as I.

• MASK is the initial label image. When you run the algorithm, the app automatically passes the
currently selected label in the Label Definitions pane to the algorithm as MASK. The label image
can be empty or contain some labeled pixels.

The automation function must return one output, MASK, which is the final label image. The MASK
image must be a logical array of the same size as I, with pixels valued as true where the label is
present.

The algorithm function used in this example, myalgorithm, performs these steps:

• Resize the input image I to the input size of the network.
• Load the pretrained network.
• Apply the network to the input image I by using the semanticseg function. The network returns

the segmented image, segmentedImg, as a categorical array with labels "tumor" and
"background".

• Convert the categorical label matrix to a binary image that is true within the tumor label region.
• Resize the logical label mask, MASK, back to the original size of the input image.

function MASK = myalgorithm(I,MASK)
%Medical Image Processing Function
%
% I      - RGB or grayscale image I that corresponds to the image data of 
%          the slice during automation.
% MASK   - A logical array where the first two dimensions match the first 
%          two dimensions of input image I. If the user has already created
%          a labeled region, MASK may have pixels labeled as true when 
%          passed to this function.
%

%--------------------------------------------------------------------------
% Auto-generated by the Medical Image Labeler App. 
%
% When used by the App, this function will be called for every slice of the
% volume as specified by the user.
%
%--------------------------------------------------------------------------

% Replace the sample below with your code----------------------------------
imsize = size(I);
networkSize = [256 256];
I = imresize(I,networkSize);

persistent trainedNet

if isempty(trainedNet) 
pretrainedFolder = fullfile(tempdir,"BreastSegmentation","breastTumorDeepLabV3");
savedData = load(fullfile(pretrainedFolder,"breast_seg_deepLabV3.mat"));
trainedNet = savedData.trainedNet; 
end

segmentedImg = semanticseg(I,trainedNet);
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MASK = segmentedImg=="tumor";
MASK = imresize(MASK,imsize(1:2));

%--------------------------------------------------------------------------

end

Close the function template. In the Automate tab of the app toolstrip, your new algorithm appears in
the Algorithm gallery.

Run Automation Algorithm

Select the image to run the algorithm on in the Data Browser pane. Make sure that the tumor label
definition is selected in the Label Definitions pane. In the Automation tab of the app toolstrip, in
the Algorithm gallery, select myAlgorithm and select Run. If your data is a multiframe image
series, you can adjust the Direction settings to specify whether the algorithm is applied to the
current frame, from the current frame back to the first frame, or from the current frame to the last
frame. Alternatively, you can directly enter a custom frame range using the Start and End text boxes.

When the algorithm finishes running, the label image is appears in the Slice panel. View the label
image to visually check the network performance.
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If you need to update the algorithm, reopen the function template in the location you specified when
you saved the function template. Before rerunning an updated algorithm, you can remove labels from
the first iteration by right-clicking on the filename in the Data Browser and selecting Remove
Labels. Alternatively, you can create new label definitions for each new iteration to visually compare
results in the Slice pane.

Apply Algorithm to Batch of Images

Once you are satisfied with your automation algorithm, you can apply it to each image loaded in the
app one by one by selecting the next file in the Data Browser and selecting Run.

Alternatively, if you have many images to label, applying the algorithm outside the app can be faster.
To apply the algorithm outside the app, first export the app data as a groundTruthMedical object.
On the Labeler tab of the app toolstrip, select Export. Under Ground Truth, select To File. In the
Export Ground Truth dialog box, navigate to the folder specified by exampleDir and click Save.
Then, load the groundTruthMedical object into the MATLAB workspace.

load(fullfile(exampleDir,"groundTruthMed.mat"))

Extract the list of label images in the groundTruthMedical object.

gTruthLabelData = gTruthMed.LabelData;
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Find the data source images that contain no labels.

idxPixel = gTruthLabelData == "";
imagesNotProcessedIdx = find(idxPixel);
imageProcessedIdx = find(~idxPixel,1);

Find the name of the directory that contains the label images.

labelDataLocation = fileparts(gTruthLabelData(imageProcessedIdx));

Find the numeric pixel label ID for the tumor label definition.

idxPixel = strfind(gTruthMed.LabelDefinitions.Name,"tumor");
pixID = gTruthMed.LabelDefinitions.PixelLabelID(idxPixel);

Loop through the data source files with no labels, applying the myalgorithm function to each image.
Write each output label image as a MAT file to the directory specified by labelDataLocation. Add
the filenames of the new label images to the list gTruthLabelData.

for i = imagesNotProcessedIdx'

    imageFile = gTruthMed.DataSource.Source{i};
   
    medImage = medicalImage(imageFile);
    labels = zeros(size(medImage.Pixels,1:3),"uint8");

    for j = 1:medImage.NumFrames
    tumorMask = myalgorithm(extractFrame(medImage,j),[]);
    temp = labels(:,:,j);
    temp(tumorMask) = pixID;
    labels(:,:,j) = temp;
    end

    [~,filename] = fileparts(imageFile);
    filename = strcat(filename,".mat");
    labelFile = fullfile(labelDataLocation,filename);
    save(labelFile,"labels")

    gTruthLabelData(i) = string(labelFile);

end

Create a new groundTruthMedical object that contains the original ultrasound images and label
definitions plus the new label image names.

newGroundTruthMed = groundTruthMedical(gTruthMed.DataSource, ...
    gTruthMed.LabelDefinitions,gTruthLabelData);

View the fully labeled data set by loading the new groundTruthMedical object in the Medical
Image Labeler app. Upon launching, the app opens the Create a new session folder dialog box. You
must use the dialog box to create a new app session to view the update groundTruthMedical object
data.

medicalImageLabeler(newGroundTruthMed);

View different images by clicking filenames in the Data Browser. Running the algorithm on the
batch of images is complete, so all of the images have tumor labels.
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Collaborate on Multi-Labeler Medical Image Labeling Projects
This page shows how to work with a multi-person team to label large medical image data sets using
the Medical Image Labeler app. Use this workflow to label a data set that consists of all 2-D images
or all 3-D images and has the same set of target labels (for example tumor, lung, and chest). The
original intensity images to be labeled are data source images.

A labeling team consists of a project manager, individual labelers, and one or more reviewers. The
project manager creates the label definitions, assigns the images to be labeled by each labeler, and
collects and compiles the labeled data. The labelers label the data source images using the label
definitions provided by the project manager, request feedback from the reviewer, and send approved
labels to the project manager. The reviewer, who can also be the project manager, checks labeled
images and provides feedback to the labelers. This figure illustrates the overall workflow and
responsibilities of each role.

The multi-person labeling process consists of these steps:

1 “Create Label Definitions and Assign Data to Labelers (Project Manager)” on page 5-29
2 “Label Data and Publish Labels for Review (Labeler)” on page 5-30
3 “Export Ground Truth Data and Send to Project Manager (Labeler)” on page 5-32
4 “Inspect Labeled Images (Reviewer)” on page 5-32
5 “Collect, Merge, and Create Training Data (Project Manager)” on page 5-33
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Create Label Definitions and Assign Data to Labelers (Project
Manager)
Create Medical Image Labeler Session

1 Open the Medical Image Labeler app from the Apps tab on the MATLAB toolstrip, or by using
the medicalImageLabeler command.

2 In the app toolstrip, click New Session. If the data set is 2-D, select New Image session (2-D).
If the data set is 3-D, select New Volume session (3-D).

Create Label Definitions

1 Click Create Label Definition in the Label Definitions pane.
2 Click on the label to change the default name. The label name must be a valid MATLAB®

variable name with no spaces. For details about valid variable names, see “Variable Names”.
3 To change the color associated with the label, click the colored square in the label identifier and

select a color from the Color dialog box.
4 Click Create Label Definition to create additional labels. Create all of the labels required for

the labeling project. When labels are nested within one another, such as tumors within an organ
within the chest cavity, create the labels in order from outermost to innermost (chest, then
lung, then tumor).

5 Click Export and, under Label Definitions, select To File to export the label definitions to a
MAT file.

Distribute Labeling Assignments

Assign each labeler a subset of images in the data set to label. For example, for a data set of 300
chest CT scans, labeler 1 might label the tumor, lung, and chest cavity in scans 1–100, and labeler
2 might label the tumor, lung, and chest cavity in scans 101–200. To ensure you can merge the
ground truth data after labeling, you must assign each labeler a unique set of data source images to
label, and use the same label definitions for each set. Send this information to each labeler:

• Label definitions, saved as a MAT file.
• List of data source files to label. Each labeler must have access to their assigned images, either in

a shared network location or on their local machine.
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Label Data and Publish Labels for Review (Labeler)
Create Medical Image Labeler session

1 Open the Medical Image Labeler app from the Apps tab on the MATLAB toolstrip, or by using
the medicalImageLabeler command.

2 In the app toolstrip, click New Session. If the data set is 2-D, select New Image session (2-D).
If the data set is 3-D, select New Volume session (3-D).

Import Label Definitions File

1 On the app toolstrip, click Import.
2 Under Import Label Definitions, select From File.

3 Select the label definitions MAT file provided by the project manager. The imported labels appear
in the Label Definitions pane.
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Import Data to Label

Load the data source images assigned to you by the project manager into the app. To load an image,
click Import on the app toolstrip and select an option under Data. Select one or more files to import
in the Import Image dialog box.

• For a volume session, you can import an image from a file or from a directory of DICOM files
corresponding to one volume.

• For an image session, you can import an image or image series from a file.

You can check that the app successfully imported the files by reading the list of filenames in the Data
Browser pane.

Label Images

Select an image in the Data Browser to begin labeling. The no labels symbol  next file names in
the Data Browser indicates which image files have not been labeled.

Draw pixel labels using the labels in the Label Definitions pane. For an example showing how to
label 3-D medical images, see “Label 3-D Medical Image Using Medical Image Labeler” on page 5-10.
For an example showing how to label a 2-D image series, see “Label 2-D Ultrasound Series Using
Medical Image Labeler” on page 5-2. The labels are saved as label images, which contain a mask of
the drawn labels for a data source image.

Publish Label Overlay Images for Review

To get feedback from the reviewer, you can publish and share label overlay images, which show the
data source image with its corresponding label image as an overlay. You can publish label overlay
images as individual PNG files or as a single PDF, which the reviewer can inspect without opening
MATLAB. To publish label overlay images, follow these steps:

1 The published images match the current settings in the app. Configure the app display settings
as desired by using these steps:

a You can change the visibility of an individual label by clicking the  icon next to the label
name in the Label Definitions pane.

b On the Labeler tab of the app toolstrip, use the Label Opacity slider to set the
transparency of the labels.

c On the Labeler tab of the app toolstrip, use the Window Level tool to set the contrast of 2-D
slice images.

d To include a 3-D snapshot in the published images, on the Labeler tab of the app toolstrip,
select Show Volume. The 3-D snapshot matches the current rotation, zoom, and display
markers in the 3-D Volume pane. On the Labeler tab, click Display Markers to change the
visibility of the scale bar and orientation axes display markers.

2 In the Data Browser, select the data source image file for which you want to publish label
overlay images. You can publish label overlay images for only one data source at a time.

3 On the app toolstrip, click Publish to open the Publish pane.
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4 Under Publish Format, select either Images or PDF. Selecting Images publishes individual
PNG files for each frame of an image series, or slice of a volume. Selecting PDF publishes one
PDF file for the entire image file.

5 Specify the Slices information. For an image session, you can specify a range of slices for a
multi-frame image sequence.

For a volume session, select the Slice Direction (coronal, sagittal, or transverse) along which to
publish images and select either All Slices or Range. If you select Range, specify a range of
slices. To include a 3-D snapshot, select Include 3-D volume Snapshot.

6 Click Publish and specify the export location.

Inspect Labeled Images (Reviewer)
Collect published label overlay images from each labeler. You can open the published PDF or PNG
files using a PDF or image viewer without using MATLAB. Inspect the labeled images, and send
feedback to the labelers if necessary. The labelers can update the labels and publish a new set of
images for additional review. When the labels are satisfactory, the labeler exports the ground truth
data and sends it to the project manager.

Export Ground Truth Data and Send to Project Manager (Labeler)
Export Ground Truth Object

When you receive approval from the reviewer, export the labeled data as a groundTruthMedical
object to share with the project manager. On the Labeler tab, click Export and, under Ground
Truth, select To File.
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Send Ground Truth Data to Project Manager

Send these files to the project manager:

• MAT file containing the groundTruthMedical object.
• Label images containing the label masks for the data source images specified in the ground truth

object. You can access the complete path to the label images in the LabelData property of the
exported groundTruthMedical object. Access the LabelData property by loading the ground
truth MAT file into the MATLAB workspace by using the load function. Share a copy of the label
images with the project manager by sending them directly or by saving a copy in a shared network
location.

Collect, Merge, and Create Training Data (Project Manager)
Collect Labeled Ground Truth Data

Collect these files from each labeler:

• MAT file containing a groundTruthMedical object.
• Label images containing the label masks for the data source images specified in the

groundTruthMedical object.

You can load each object into the workspace by using the load function. Because the Medical
Image Labeler always saves the ground truth object as gTruthMed in the exported MAT file, you
must specify unique variable names when loaded each file to avoid overwriting data. For example,
this code loads ground truth objects from two exported MAT files, gTruth1.mat and gTruth2.mat,
that each contain a groundTruthMedical object, gTruthMed.

matFile1 = load("gTruth1.mat");
gTruthMed1 = matFile1.gTruthMed;
matFile2 = load("gTruth2.mat");
gTruthMed2 = matFile2.gTruthMed;

The groundTruthMedical object contains file paths in the DataSource and LabelData properties
that point to the location of the data source images and the label images, respectively, on the local
machine of the associated labeler.

Update File Paths

To merge the ground truth objects and create training data, you must update each ground truth
object to point to the data source and label image file locations on your machine. Even if the files are
saved in a shared network location, if a labeler maps a different drive letter to the shared network
folder, the file path can be incorrect.

To update these paths, use the changeFilePaths object function. Specify the ground truth object as
an input argument to this function. If the directory paths have changed, but the filenames have not,
specify a string vector containing the folder names for the old and new paths. The function updates
all file paths in the groundTruthMedical object at the specified original path. The function returns
any paths that it is unable to resolve. For example, this code shows how to change the drive letter for
a directory.

alternativePaths = ["C:\Shared\ImgFolder","D:\Shared\ImgFolder"];
unresolvedPaths = changeFilePaths(gTruthMed1,alternativePaths);
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If the filenames also changed, specify a string array of old and new file paths. For example, this code
shows how to change the drive letter for individual files, and how to append a suffix to each filename.

alternativePaths = ...
{["C:\Shared\ImgFolder\Img1.png","D:\Shared\ImgFolder\Img1_new.png"], ...
["C:\Shared\ImgFolder\Img2.png","D:\Shared\ImgFolder\Img2_new.png"], ...
.
.
.
["C:\Shared\ImgFolder\ImgN.png","D:\Shared\ImgFolder\ImgN_new.png"]};
unresolvedPaths = changeFilePaths(gTruthMed1,alternativePaths);

By default, changeFilePaths updates both the data source and the label image file paths. To
update the paths stored in the DataSource and LabelData properties separately, use the
propertyName argument.

Merge Ground Truth Data

Merge the updated groundTruthMedical objects into one object by using the merge object
function. For example, this code merges two objects, gTruthMed1 and gTruthMed2.

gTruthMerged = merge(gTruthMed1,gTruthMed2);

Create Training Data

You can use the merged labeled ground truth data to train a semantic segmentation network. To
create training data, load the data source images into an imageDatastore. Load the label images
into a pixelLabelDatastore. For more details about creating training data for semantic
segmentation from a groundTruthMedical object, see “Create Datastores for Medical Image
Semantic Segmentation” on page 6-2.

See Also
groundTruthMedical | changeFilePaths | merge

Related Examples
• “Get Started with Medical Image Labeler” on page 1-9
• “Label 3-D Medical Image Using Medical Image Labeler” on page 5-10
• “Label 2-D Ultrasound Series Using Medical Image Labeler” on page 5-2
• “Automate Labeling in Medical Image Labeler” on page 5-20
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Medical Image Segmentation

• “Create Datastores for Medical Image Semantic Segmentation” on page 6-2
• “Convert Ultrasound Image Series into Training Data for 2-D Semantic Segmentation Network”

on page 6-5
• “Create Training Data for 3-D Medical Image Semantic Segmentation” on page 6-9
• “Segment Lungs from CT Scan Using Pretrained Neural Network” on page 6-14
• “Brain MRI Segmentation Using Pretrained 3-D U-Net Network” on page 6-24
• “Breast Tumor Segmentation from Ultrasound Using Deep Learning” on page 6-32
• “Cardiac Left Ventricle Segmentation from Cine-MRI Images Using U-Net Network” on page 6-40
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Create Datastores for Medical Image Semantic Segmentation
Semantic segmentation deep learning networks segment a medical image by assigning a class label,
such as tumor or lung, to every pixel in the image. To train a semantic segmentation network, you
must have a collection of images, or data sources, and a collection of label images that contain labels
for the pixels in the data source images. Manage training data for semantic segmentation by using
datastores:

• Load data source images by using an imageDatastore object.
• Load pixel label images by using a pixelLabelDatastore object.
• Pair data source images and pixel label images by using a CombinedDatastore or a

randomPatchExtractionDatastore object.

Medical Image Ground Truth Data
You can use the Medical Image Labeler app to label 2-D or 3-D medical images to generate training
data for semantic segmentation networks. The app stores labeling results in a groundTruthMedical
object, which specifies the filenames of data source and pixel label images in its DataSource and
LabelData properties, respectively. The table shows how a groundTruthMedical object formats
the data source and label image information for 2-D versus 3-D data.

Type of Data Data Source Format Label Data Format
2-D medical images or
multiframe 2-D image series

The DataSource property
contains an ImageSource
object that specifies 2-D images
or image series in one of these
formats:

• Single DICOM file.
• Single NIfTI file.

Note A groundTruthMedical
object can specify a combination
of 2-D DICOM and NIfTI data
sources.

The LabelData property
contains a string array. Each
element specifies the filename
of the label image for the
corresponding data source.

• 2-D label images are MAT
files, regardless of the data
source file format.

• If a data source has no
labels, the corresponding
element of LabelData is an
empty string, "".
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Type of Data Data Source Format Label Data Format
3-D medical image volumes The DataSource property

contains a VolumeSource
object that specifies 3-D image
volumes in one of these formats:

• Directory of DICOM files
corresponding to one
volume.

• Single DICOM file.
• Single NIfTI file.
• Single NRRD file.

Note A groundTruthMedical
object can specify a combination
of 3-D DICOM, NIfTI, and NRRD
data sources.

The LabelData property
contains a string array. Each
element specifies the filename
of the label image for the
corresponding data source.

• 3-D label images are NIfTI
files, regardless of the data
source file format.

• If a data source has no
labels, the corresponding
element of LabelData is an
empty string, "".

Datastores for Semantic Segmentation
You can perform medical image semantic segmentation using 2-D or 3-D deep learning networks. A 2-
D network accepts 2-D input images and predicts segmentation labels using 2-D convolution kernels.
The input images can be one of these sources:

• Images from 2-D modalities, such as X-ray.
• Individual frames extracted from a multiframe 2-D image series, such as an ultrasound video.
• Individual slices extracted from a 3-D image volume, such as a CT or MRI scan.

A 3-D network accepts 3-D input images and predicts segmentation labels using 3-D convolution
kernels. The input images are 3-D medical volumes, such as entire CT or MRI volumes.

The benefits of 2-D networks include faster prediction speeds and lower memory requirements.
Additionally, you can generate many 2-D training images from one image volume or series. Therefore,
fewer scans are required to train a 2-D network that segments a volume slice-by-slice versus training
a fully 3-D network. The major benefit of 3-D networks is that they use information from adjacent
slices or frames to predict segmentation labels, which can produce more accurate results.

• For an example that shows how to create datastores that contain 2-D ultrasound frames, see
“Convert Ultrasound Image Series into Training Data for 2-D Semantic Segmentation Network” on
page 6-5.

• For an example that shows how to create, preprocess, and augment 3-D datastores for
segmentation, see “Create Training Data for 3-D Medical Image Semantic Segmentation” on page
6-9.

See Also
groundTruthMedical | ImageSource | VolumeSource | imageDatastore |
pixelLabelDatastore | CombinedDatastore | randomPatchExtractionDatastore
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Related Examples
• “Convert Ultrasound Image Series into Training Data for 2-D Semantic Segmentation Network”

on page 6-5
• “Create Training Data for 3-D Medical Image Semantic Segmentation” on page 6-9
• “Collaborate on Multi-Labeler Medical Image Labeling Projects” on page 5-28
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Convert Ultrasound Image Series into Training Data for 2-D
Semantic Segmentation Network

This example shows how to create training data for a 2-D semantic segmentation network using a
groundTruthMedical object that contains multiframe ultrasound image series. To train a semantic
segmentation network, you need pairs of data source images and label images stored in an
imageDatastore and pixelLabelDatastore respectively. To train a 2-D network using data from
a multiframe image series, you must convert the series into individual frames stored in separate files.

Create Ground Truth Object

You can export a groundTruthMedical object from the Medical Image Labeler app or create one
programmatically.

This example creates a groundTruthMedicalobject by using the createGroundTruthMed2D
helper function. The helper function is attached to this example as a supporting file. The
groundTruthMedical object references a multiframe echocardiogram data source and its
corresponding label image series. The data source and label image are stored as a single DICOM file
and MAT file, respectively.

gTruthMed = createGroundTruthMed2D;

Extract Data from Ground Truth Object

Extract the data source and label image file names from the groundTruthMedical object.

dataSource = gTruthMed.DataSource.Source;
labelData = gTruthMed.LabelData;

Remove any data sources that are missing label images.

noLabelsIdx = labelData ~= "";
dataSource = dataSource(noLabelsIdx);
labelData = labelData(noLabelsIdx);

Extract the label definitions from the groundTruthMedical object. Add an addition label definition
for the background region, corresponding to a pixel value of 0.

labelDefs = gTruthMed.LabelDefinitions;
labelDefs(2,:) = {"background",[0 1 0],0};

Convert Multiframe Series into 2-D Frames

The data source is a multiframe ultrasound image series stored in a single DICOM file. Convert the
DICOM file into individual 2-D images, stored as MAT files, by using the
convertImageSeriesToFrames supporting function. The supporting function is defined at the end
of this example.

newDataSource = convertImageSeriesToFrames(dataSource);
newDataSource = string(newDataSource);

The label data is a multiframe image series stored in a single MAT file. Convert the single MAT file
into individual MAT files for each frame by using the convertLabelSeriesToFrames supporting
function. The supporting function is defined at the end of this example.
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newLabelData = convertLabelSeriesToFrames(labelData);

Create Datastores

Load the individual MAT file data sources into a imageDatastore.

imds = imageDatastore(newDataSource,...
    ReadFcn=@readFramesLabels,...
    FileExtensions=[".mat",".dcm"]);

Load the individual MAT file label images into a pixelLabelDatastore (Computer Vision Toolbox).
Use the label definitions from the groundTruthMedical object to map pixel values to categorical
labels in the datastore.

pxds = pixelLabelDatastore(cellstr(newLabelData),labelDefs.Name,labelDefs.PixelLabelID,...
    ReadFcn=@readFramesLabels,...
    FileExtensions=".mat");

Preview one image and label. Display the labeled image by using the labeloverlay function.

im = preview(imds);
label = preview(pxds);
imOverlay = labeloverlay(im,label);
imshow(imOverlay)
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Create a CombinedDatastore that pairs each data source image with its corresponding label image.

trainingData = combine(imds,pxds);

Supporting Functions

The convertImageSeriesToSlices function converts a multiframe DICOM image series, such as
ultrasound data, into individual 2-D frames stored in MAT files. The function returns a cell array of
the new MAT filenames.

function newDataSource = convertImageSeriesToFrames(labelDataSource)
% Create a data directory to store MAT files
dataFileDir = fullfile(pwd,"GroundTruthData");

if ~isfolder(dataFileDir)
    mkdir(dataFileDir)
end

image = medicalImage(labelDataSource);
data3d = image.Pixels;

% Assumption that time is the third dimension
numFrames =  size(data3d,3);
newDataSource = cell(numFrames,1);

for frame = 1:numFrames
    data = squeeze(data3d(:,:,frame,:));
    [~,name,~] = fileparts(labelDataSource);
    matFileName = strcat(fullfile(dataFileDir,name),"_",num2str(frame),".mat");
    save(matFileName,"data");
    newDataSource{frame} = string(matFileName);
end

end

The convertLabelSeriesToFrames function converts a multiframe image series stored in a single
file into individual frames stored as separate MAT files. The function returns a cell array of the new
MAT filenames.

function newlabelData = convertLabelSeriesToFrames(labelSource)
% Create a label directory to store MAT files
labelFileDir = fullfile(pwd,"GroundTruthLabel");

if ~isfolder(labelFileDir)
    mkdir(labelFileDir)
end

labelData = load(labelSource);

% Assumption that time is the third dimension
numFrames =  size(labelData.labels,3);
newlabelData = cell(numFrames,1);

for frame = 1:numFrames
    data = squeeze(labelData.labels(:,:,frame,:));
    [~,name,~] = fileparts(labelSource);
    matFileName = strcat(fullfile(labelFileDir,name),"_",num2str(frame),".mat");
    save(matFileName,"data");
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    newlabelData{frame} = string(matFileName);
end

end

The readFramesLabels function reads data stored in a variable named data from a MAT file.

function data = readFramesLabels(filename)
d = load(filename);
data = d.data;
end

See Also
groundTruthMedical | imageDatastore | pixelLabelDatastore | transform | combine

Related Examples
• “Label 2-D Ultrasound Series Using Medical Image Labeler” on page 5-2
• “Create Training Data for 3-D Medical Image Semantic Segmentation” on page 6-9
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Create Training Data for 3-D Medical Image Semantic
Segmentation

This example shows how to create training data for a 3-D semantic segmentation network using a
groundTruthMedical object that contains 3-D medical image data. This example also shows how to
transform datastores to preprocess and augment image and pixel label data.

Create Ground Truth Object

You can export a groundTruthMedical object from the Medical Image Labeler app or create one
programmatically.

This example creates a groundTruthMedical object by using the createGroundTruthMed3D
helper function. The helper function is attached to this example as a supporting file. The ground truth
object references three data sources, including one chest CT volume stored as a directory of DICOM
files and two chest CT volumes stored as NIfTI files. The directory of DICOM files and its label image
are attached to this example as supporting files. The createGroundTruthMed3D function
downloads the NIfTI files and their label images from the MathWorks® website. The NIfTI files are a
subset of the Medical Segmentation Decathlon data set [1 on page 6-13], and have a total file size of
approximately 76 MB.

gTruthMed = createGroundTruthMed3D;

Extract Data from Ground Truth Object

Extract the data source and label image file names from the groundTruthMedical object.

dataSource = gTruthMed.DataSource.Source;
labelData = gTruthMed.LabelData;

Remove data sources that are missing label images.

noLabelsIdx = labelData~="";
dataSource = dataSource(noLabelsIdx);
labelData = labelData(noLabelsIdx);

Extract the label definitions from the groundTruthMedical object. Add an addition label definition
for the background region, corresponding to a pixel value of 0.

labelDefs = gTruthMed.LabelDefinitions;
labelDefs(2,:) = {"background",[0 1 0],0};

Load Data Source Images into Image Datastore

A groundTruthMedical object can contain data sources stored as single DICOM, NIFTI, or NRRD
file, or a directory of DICOM files. The imageDatastore object does not support reading volumetric
images from a directory of DICOM files. Use the convertMultifileDICOMs supporting function to
search dataSource for data sources stored as a directory of DICOM files, and convert any DICOM
directories into single MAT files.

dataSource = convertMultifileDICOMs(dataSource);
dataSource = string(dataSource);

Load the updated data sources into an imageDatastore. Specify a custom read function,
readMedicalVolumes, which is defined at the end of this example. The readMedicalVolumes
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function reads data from medical volumes stored as a single MAT file, DICOM file, or NIfTI file.
The .gz file extension corresponds to compressed NIfTI files.

imds = imageDatastore(dataSource,...
    ReadFcn=@readMedicalVolumes,...
    FileExtensions=[".mat",".dcm",".nii",".gz"]);

Load Label Images into Pixel Label Datastore

Load the label images into a pixelLabelDatastore (Computer Vision Toolbox) using niftiread
as the read function.

pxds = pixelLabelDatastore(cellstr(labelData),labelDefs.Name,labelDefs.PixelLabelID,...
    ReadFcn=@niftiread,...
    FileExtensions=[".nii",".gz"]);

Preview one image volume and its label image.

vol = preview(imds);
label = preview(pxds);

Display one slice of the previewed volume by using the labeloverlay function. To better view the
grayvalues of the CT slice with labeloverlay, first rescale the image intensities to the range [0, 1].

volslice = vol(:,:,100);
volslice = rescale(volslice);
labelslice = label(:,:,100);
imOverlay = labeloverlay(volslice,labelslice);
imshow(imOverlay)
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Pair Image and Label Data

Create a CombinedDatastore that pairs each data source image with its corresponding label image.

trainingData = combine(imds,pxds);

Augment and Preprocess Training Data

Specify the input size of the target deep learning network.

targetSize = [300 300 60];

Augment the training data by using the transform function with custom operations specified by the
jitterImageIntensityAndWarp supporting function defined a the end of this example.

augmentedTrainingData = transform(trainingData,@jitterImageIntensityAndWarp);
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Preprocess the training data by using the transform function with custom preprocessing operation
specified by the centerCropImageAndLabel supporting function defined at the end of this example.

preprocessedTrainingData = transform(augmentedTrainingData,...
    @(data)centerCropImageAndLabel(data,targetSize));

Supporting Functions

The convertMultifileDICOMs function reads a cell array of data source file names, and converts
any data sources stored as a directory of DICOM files into a single MAT file.

function dataSource = convertMultifileDICOMs(dataSource)
numEntries = length(dataSource);
dataFileDir = fullfile(pwd,"GroundTruthData");

if ~isfolder(dataFileDir)
    mkdir(dataFileDir)
end

for idx = 1:numEntries
    currEntry = dataSource{idx};
    % Multi-file DICOMs
    if length(currEntry) > 1
        matFileName = fileparts(currEntry(1));
        matFileName = split(matFileName,filesep);
        matFileName = replace(strtrim(matFileName(end))," ","_");
        matFileName = strcat(fullfile(dataFileDir,matFileName),".mat");

        vol = medicalVolume(currEntry);
        data = vol.Voxels;

        save(matFileName,"data");
        dataSource{idx} = string(matFileName);
    end
end
end

The readMedicalVolumes function loads medical image volume data from a single MAT file, DICOM
file, or NIfTI file.

function data = readMedicalVolumes(filename)
[~,~,ext] = fileparts(filename);
if ext == ".mat"
    d = load(filename);
    data = d.data;
else
    vol = medicalVolume(filename);
    data = vol.Voxels;
end
end

The jitterImageColorAndWarp function randomly adjusts the brightness, contrast, and gamma
correction of the data source image values, and applies random geometric transformations including
scaling, reflection, and rotation to the data source and pixel label images.

function out = jitterImageIntensityAndWarp(data)
% Unpack original data.
I = data{1};
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C = data{2};

% Apply random intensity jitter.
I = jitterIntensity(I,Brightness=0.3,Contrast=0.4,Gamma=0.2);

% Define random affine transform.
tform = randomAffine3d(Scale=[0.8 1.5],XReflection=true,Rotation=[-30 30]);
rout = affineOutputView(size(I),tform);

% Transform image and pixel labels.
augmentedImage = imwarp(I,tform,"OutputView",rout);
augmentedLabel = imwarp(C,tform,"OutputView",rout);

% Return augmented data.
out = {augmentedImage,augmentedLabel};
end

The centerCropImageAndLabel function crops the data source images and pixel labels to the input
size of the target deep learning network.

function out = centerCropImageAndLabel(data,targetSize)
    win = centerCropWindow3d(size(data{1}),targetSize);
    out{1} = imcrop3(data{1},win);
    out{2} = imcrop3(data{2},win);
end

References

[1] Medical Segmentation Decathlon. "Brain Tumours." Tasks. Accessed May 10, 2018. http://
medicaldecathlon.com/.

The Medical Segmentation Decathlon data set is provided under the CC-BY-SA 4.0 license. All
warranties and representations are disclaimed. See the license for details.

See Also
groundTruthMedical | imageDatastore | pixelLabelDatastore | transform | combine

Related Examples
• “Label 3-D Medical Image Using Medical Image Labeler” on page 5-10
• “Convert Ultrasound Image Series into Training Data for 2-D Semantic Segmentation Network”

on page 6-5
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Segment Lungs from CT Scan Using Pretrained Neural Network

This example shows how to import a pretrained ONNX™ (Open Neural Network Exchange) 3-D U-Net
[1 on page 6-22] and use it to perform semantic segmentation of the left and right lungs from a 3-D
chest CT scan. Semantic segmentation associates each voxel in a 3-D image with a class label. In this
example, you classify each voxel in a test data set as belonging to the left lung or right lung. For more
information about semantic segmentation, see “Semantic Segmentation” (Computer Vision Toolbox).

A challenge of applying pretrained networks is the possibility of differences between the intensity and
spatial details of a new data set and the data set used to train the network. Preprocessing is typically
required to format the data to match the expected network input and achieve accurate segmentation
results. In this example, you standardize the spatial orientation and normalize the intensity range of a
test data set before applying the pretrained network.

Download Pretrained Network

Specify the desired location of the pretrained network.

dataDir = fullfile(tempdir,"lungmask");
if ~exist(dataDir,"dir")   
    mkdir(dataDir);
end

Download the pretrained network from the MathWorks® website by using the
downloadTrainedNetwork helper function. The helper function is attached to this example as a
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supporting file. The network on the MathWorks website is equivalent to the R231 model, available in
the LungMask GitHub repository [2 on page 6-22], converted to the ONNX format. The size of the
pretrained network is approximately 11 MB.

lungmask_url = "https://www.mathworks.com/supportfiles/medical/pretrainedLungmaskR231Net.onnx";
downloadTrainedNetwork(lungmask_url,dataDir);

Import Pretrained Network

Import the ONNX network as a function by using the importONNXFunction (Deep Learning
Toolbox) function. You can use this function to import a network with layers that the
importONNXNetwork (Deep Learning Toolbox) function does not support. The
importONNXFunction function requires the Deep Learning Toolbox™ Converter for ONNX Model
Format support package. If this support package is not installed, then importONNXFunction
provides a download link.

The importONNXFunction function imports the network and returns an ONNXParameters object
that contains the network parameters. When you import the pretrained lung segmentation network,
the function displays a warning that the LogSoftmax operator is not supported.

modelfileONNX = fullfile(dataDir,"pretrainedLungmaskR231Net.onnx");
modelfileM = "importedLungmaskFcn_R231.m";
params = importONNXFunction(modelfileONNX,modelfileM);

Function containing the imported ONNX network architecture was saved to the file importedLungmaskFcn_R231.m.
To learn how to use this function, type: help importedLungmaskFcn_R231.

Warning: Unable to import some ONNX operators or attributes. They may have been replaced by 'PLACEHOLDER' functions in the imported model function.

1 operator(s)    :    Operator 'LogSoftmax' is not supported with its current settings or in this context.

Open the generated function, saved as an M file in the current directory. The function contains these
lines of code that indicate that the unsupported LogSoftmax operator is replaced with a placeholder:

% PLACEHOLDER FUNCTION FOR UNSUPPORTED OPERATOR (LogSoftmax):
[Vars.x460, NumDims.x460] = PLACEHOLDER(Vars.x459);

In the function definition, replace the placeholder code with this code. Save the updated function as
lungmaskFcn_R231. A copy of lungmaskFcn_R231 with the correct code is also attached to this
example as a supporting file.

% Replacement for PLACEHOLDER FUNCTION FOR UNSUPPORTED OPERATOR (LogSoftmax):
Vars.x460 = log(softmax(Vars.x459,'DataFormat','CSSB'));
NumDims.x460 = NumDims.x459;

Save the network parameters in the ONNXParameters object params. Save the parameters in a new
MAT file.

save("lungmaskParams_R231","params");

Load Data

Test the pretrained lung segmentation network on a test data set. The test data is a CT chest volume
from the Medical Segmentation Decathlon data set [3 on page 6-22]. Download the
MedicalVolumNIfTIData ZIP archive from the MathWorks website, then unzip the file. The ZIP file
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contains two CT chest volumes and corresponding label images, stored in the NIfTI file format. The
total size of the data set is approximately 76 MB.

zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalVolumeNIfTIData.zip");
filePath = fileparts(zipFile);
unzip(zipFile,filePath)
dataFolder = fullfile(filePath,"MedicalVolumeNIfTIData");

Specify the file name of the first CT volume.

fileName = fullfile(dataFolder,"lung_027.nii.gz");

Create a medicalVolume object for the CT volume.

medVol = medicalVolume(fileName);

Extract and display the voxel data from the medicalVolume object.

V = medVol.Voxels;
volshow(V,RenderingStyle="GradientOpacity");
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Preprocess Test Data

Preprocess the test data to match the expected orientation and intensity range of the pretrained
network.

Rotate the test image volume in the transverse plane to match the expected input orientation for the
pretrained network. The network was trained using data oriented with the patient bed at the bottom
of the image, so the test data must be oriented in the same direction. If you change the test data, you
need to apply an appropriate spatial transformation to match the expected orientation for the
network.

rotationAxis = [0 0 1];
volAligned = imrotate3(V,90,rotationAxis);

Display a slice of the rotated volume to check the updated orientation.

imshow(volAligned(:,:,150),[])
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Use intensity normalization to rescale the range of voxel intensities in the region of interest to the
range [0, 1], which is the range that the pretrained network expects. The first step in intensity
normalization is to determine the range of intensity values within the region of interest. The values
are in Hounsfield units. To determine the thresholds for the intensity range, plot a histogram of the
voxel intensity values. Set the x- and y-limits of the histogram plot based on the minimum and
maximum values. The histogram has two large peaks. The first peak corresponds to background
pixels outside the body of the patient and air in the lungs. The second peak corresponds to soft tissue
such as the heart and stomach.

figure
histogram(V)
xlim([min(V,[],"all") max(V,[],"all")])
ylim([0 2e6])
xlabel("Intensity [Hounsfield Units]")
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ylabel("Number of Voxels")
xline([-1024 500],"red",LineWidth=1)

To limit the intensities to the region containing the majority of the tissue in the region of interest,
select the thresholds for the intensity range as –1024 and 500.

th = [-1024 500];

Apply the preprocessLungCT helper function to further preprocess the test image volume. The
helper function is attached to this example as a supporting file. The preprocessLungCT function
performs these steps:

1 Resize each 2-D slice along the transverse dimension to the target size, imSize. Decreasing the
number of voxels can improve prediction speed. Set the target size to 256-by-256 voxels.

2 Crop the voxel intensities to the range specified by the thresholds in th.
3 Normalize the updated voxel intensities to the range [0, 1].

imSize = [256 256];
volInp = preprocessLungCT(volAligned,imSize,th);
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Segment Test Data and Postprocess Predicted Labels

Segment the test CT volume by using the lungSeg helper function. The helper function is attached to
this example as a supporting file. The lungSeg function predicts the segmentation mask by
performing inference on the pretrained network and postprocesses the network output to obtain the
segmentation mask.

To decrease the required computational time, the lungSeg function performs inference on the slices
of a volume in batches. Specify the batch size as eight slices using the batchSize name-value
argument of lungSeg. Increasing the batch size increases the speed of inference, but requires more
memory. If you run out of memory, try deceasing the batch size.

During postprocessing, the lungSeg helper function applies a mode filter to the network output to
smooth the segmentation labels using the modefilt function. You can set the size of the mode filter
by using the modeFilt name-value argument of lungSeg. The default filter size is [9 9 9].

labelOut = lungSeg(volInp,batchSize=8);

Display Predicted Segmentation Labels

Display the segmentation results by using the volshow function. Use the OverlayData argument to
plot the predicted segmentation labels. To focus on the label data, use the Alphamap argument to set
the opacity of the image volume to 0 and the OverlayAlphamap argument to set the opacity of the
labels to 0.9.

volshow(volInp,OverlayData=labelOut,...
    Alphamap=0,...
    OverlayAlphamap=0.9,...
    RenderingStyle="GradientOpacity");
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You can also display the preprocessed test volume as slice planes with the predicted segmentation
labels as an overlay by setting the RenderingStyle name-value argument to "SlicePlanes".
Specify the lung segmentation label using the OverlayData name-value argument.

volshow(volInp,OverlayData=labelOut,...
    OverlayAlphamap=0.9,...
    RenderingStyle="SlicePlanes");

Click and drag the mouse to rotate the volume. To scroll in a plane, pause on the slice you want to
investigate until it becomes highlighted, then click and drag. The left and right lung segmentation
masks are visible in the slices for which they are defined.
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Related Examples
• “Segment Lungs from 3-D Chest Scan”
• “Brain MRI Segmentation Using Pretrained 3-D U-Net Network” on page 6-24
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Brain MRI Segmentation Using Pretrained 3-D U-Net Network

This example shows how to segment a brain MRI using a deep neural network.

Segmentation of brain scans enables the visualization of individual brain structures. Brain
segmentation is also commonly used for quantitative volumetric and shape analyses to characterize
healthy and diseased populations. Manual segmentation by clinical experts is considered the highest
standard in segmentation. However, the process is extremely time-consuming and not practical for
labeling large data sets. Additionally, labeling requires expertise in neuroanatomy and is prone to
errors and limitations in interrater and intrarater reproducibility. Trained segmentation algorithms,
such as convolutional neural networks, have the potential to automate the labeling of large clinical
data sets.

In this example, you use the pretrained SynthSeg neural network [1 on page 6-30], a 3-D U-Net for
brain MRI segmentation. SynthSeg can be used to segment brain scans of any contrast and resolution
without retraining or fine-tuning. SynthSeg is also robust to a wide array of subject populations, from
young and healthy to aging and diseased subjects, and a wide array of scan conditions, such as white
matter lesions, with or without preprocessing, including bias field corruption, skull stripping,
intensity normalization, and template registration.

Download Brain MRI and Label Data

This example uses a subset of the CANDI data set [2 on page 6-30] [3 on page 6-30]. The subset
consists of a brain MRI volume and the corresponding ground truth label volume for one patient.
Both files are in the NIfTI file format. The total size of the data files is ~2.5 MB.

Run this code to download the dataset from the MathWorks® website and unzip the downloaded
folder.

zipFile = matlab.internal.examples.downloadSupportFile("image","data/brainSegData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)

The dataDir folder contains the downloaded and unzipped dataset.

dataDir = fullfile(filepath,"brainSegData");
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Load Pretrained Network

This example uses a pretrained TensorFlow-Keras convolutional neural network. Download the
pretrained network from the MathWorks® website by using the helper function
downloadTrainedNetwork. The helper function is attached to this example as a supporting file. The
size of the pretrained network is approximately 51 MB.

trainedBrainCANDINetwork_url = "https://www.mathworks.com/supportfiles/"+ ...
    "image/data/trainedBrainSynthSegNetwork.h5";
downloadTrainedNetwork(trainedBrainCANDINetwork_url,dataDir);

Load Test Data

Read the metadata from the brain MRI volume by using the niftiinfo function. Read the brain MRI
volume by using the niftiread function.

imFile = fullfile(dataDir,"anat.nii.gz");
metaData = niftiinfo(imFile);
vol = niftiread(metaData);

In this example, you segment the brain into 32 classes corresponding to anatomical structures. Read
the names and numeric identifiers for each class label by using the
getBrainCANDISegmentationLabels helper function. The helper function is attached to this
example as a supporting file.

labelDirs = fullfile(dataDir,"groundTruth");
[classNames,labelIDs] = getBrainCANDISegmentationLabels;

Preprocess Test Data

Preprocess the MRI volume by using the preProcessBrainCANDIData helper function. The helper
function is attached to this example as a supporting file. The helper function performs these steps:

• Resampling — If resample is true, resample the data to the isotropic voxel size 1-by-1-by-1 mm.
By default, resample is false and the function does not perform resampling. To test the
pretrained network on images with a different voxel size, set resample to true if the input is not
isotropic.

• Alignment — Rotate the volume to a standardized RAS orientation.
• Cropping — Crop the volume to a maximum size of 192 voxels in each dimension.
• Normalization — Normalize the intensity values of the volume to values in the range [0, 1], which

improves the contrast.

resample = false;
cropSize = 192;
[volProc,cropIdx,imSize] = preProcessBrainCANDIData(vol,metaData,cropSize,resample);
inputSize = size(volProc);

Convert the preprocessed MRI volume into a formatted deep learning array with the SSSCB (spatial,
spatial, spatial, channel, batch) format by using dlarray (Deep Learning Toolbox).

volDL = dlarray(volProc,"SSSCB");

Define Network Architecture

Import the network layers from the downloaded model file of the pretrained network using the
importKerasLayers (Deep Learning Toolbox) function. The importKerasLayers function
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requires the Deep Learning Toolbox™ Converter for TensorFlow Models support package. If this
support package is not installed, then importKerasLayers provides a download link. Specify
ImportWeights as true to import the layers using the weights from the same HDF5 file. The
function returns a layerGraph (Deep Learning Toolbox) object.

The Keras network contains some layers that the Deep Learning Toolbox™ does not support. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

modelFile = fullfile(dataDir,"trainedBrainSynthSegNetwork.h5");
lgraph = importKerasLayers(modelFile,ImportWeights=true,ImageInputSize=inputSize);

Warning: Imported layers have no output layer because the model does not specify a loss function. Add an output layer or use the 'OutputLayerType' name-value argument when you call importKerasLayers.

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

To replace the placeholder layers in the imported network, first identify the names of the layers to
replace. Find the placeholder layers using findPlaceholderLayers (Deep Learning Toolbox).

placeholderLayers = findPlaceholderLayers(lgraph)

placeholderLayers = 
  PlaceholderLayer with properties:

                  Name: 'unet_prediction'
    KerasConfiguration: [1×1 struct]
               Weights: []
           InputLabels: {''}
          OutputLabels: {''}

   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

Define existing layers with the same configurations as the imported Keras layers.

sf = softmaxLayer;

Replace the placeholder layers with existing layers using replaceLayer (Deep Learning Toolbox).

lgraph = replaceLayer(lgraph,"unet_prediction",sf);

Convert the network to a dlnetwork (Deep Learning Toolbox) object.

net = dlnetwork(lgraph);

Display the updated layer graph information.

layerGraph(net)

ans = 
  LayerGraph with properties:

     InputNames: {'unet_input'}

6 Medical Image Segmentation

6-26



    OutputNames: {1×0 cell}
         Layers: [60×1 nnet.cnn.layer.Layer]
    Connections: [63×2 table]

Predict Using Test Data

Predict Network Output

Predict the segmentation output for the preprocessed MRI volume. The segmentation output
predictIm contains 32 channels corresponding to the segmentation label classes, such as
"background", "leftCerebralCortex", "rightThalamus". The predictIm output assigns
confidence scores to each voxel for every class. The confidence scores reflect the likelihood of the
voxel being part of the corresponding class. This prediction is different from the final semantic
segmentation output, which assigns each voxel to exactly one class.

predictIm = predict(net,volDL);

Test Time Augmentation

This example uses test time augmentation to improve segmentation accuracy. In general,
augmentation applies random transformations to an image to increase the variability of a data set.
You can use augmentation before network training to increase the size of the training data set. Test
time augmentation applies random transformations to test images to create multiple versions of the
test image. You can then pass each version of the test image to the network for prediction. The
network calculates the overall segmentation result as the average prediction for all versions of the
test image. Test time augmentation improves segmentation accuracy by averaging out random errors
in the individual network predictions.

By default, this example flips the MRI volume in the left-right direction, resulting in a flipped volume
flippedData. The network output for the flipped volume is flipPredictIm. Set flipVal to
false to skip the test time augmentation and speed up prediction.

flipVal = ;
if flipVal
    flippedData = fliplr(volProc);  
    flippedData = flip(flippedData,2);
    flippedData = flip(flippedData,1);
    flippedData = dlarray(flippedData,"SSSCB");
    flipPredictIm = predict(net,flippedData);
else
    flipPredictIm = [];  
end

Postprocess Segmentation Prediction

To get the final segmentation maps, postprocess the network output by using the
postProcessBrainCANDIData helper function. The helper function is attached to this example as a
supporting file. The postProcessBrainCANDIData function performs these steps:

• Smoothing — Apply a 3-D Gaussian smoothing filter to reduce noise in the predicted segmentation
masks.

• Morphological Filtering — Keep only the largest connected component of predicted segmentation
masks to remove additional noise.
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• Segmentation — Assign each voxel to the label class with the greatest confidence score for that
voxel.

• Resizing — Resize the segmentation map to the original input volume size. Resizing the label
image allows you to visualize the labels as an overlay on the grayscale MRI volume.

• Alignment — Rotate the segmentation map back to the orientation of the original input MRI
volume.

The final segmentation result, predictedSegMaps, is a 3-D categorical array the same size as the
original input volume. Each element corresponds to one voxel and has one categorical label.

predictedSegMaps = postProcessBrainCANDIData(predictIm,flipPredictIm,imSize, ...
    cropIdx,metaData,classNames,labelIDs);

Overlay a slice from the predicted segmentation map on a corresponding slice from the input volume
using the labeloverlay function. Include all the brain structure labels except the background
label.

sliceIdx = 80;
testSlice = rescale(vol(:,:,sliceIdx));
predSegMap = predictedSegMaps(:,:,sliceIdx);
B = labeloverlay(testSlice,predSegMap,"IncludedLabels",2:32);
figure
montage({testSlice,B})

Quantify Segmentation Accuracy

Measure the segmentation accuracy by comparing the predicted segmentation labels with the ground
truth labels drawn by clinical experts.

Create a pixelLabelDatastore (Computer Vision Toolbox) to store the labels. Because the NIfTI
file format is a nonstandard image format, you must use a NIfTI file reader to read the pixel label
data. You can use the helper NIfTI file reader, niftiReader, defined at the bottom of this example.
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pxds = pixelLabelDatastore(labelDirs,classNames,labelIDs,FileExtensions=".gz",...
    ReadFcn=@niftiReader);

Read the ground truth labels from the pixel label datastore.

groundTruthLabel = read(pxds);
groundTruthLabel = groundTruthLabel{1};

Measure the segmentation accuracy using the dice function. This function computes the Dice index
between the predicted and ground truth segmentations.

diceResult = zeros(length(classNames),1);
for j = 1:length(classNames)
    diceResult(j)= dice(groundTruthLabel==classNames(j),...
        predictedSegMaps==classNames(j));
end

Calculate the average Dice index across all labels for the MRI volume.

meanDiceScore = mean(diceResult);
disp("Average Dice score across all labels = " +num2str(meanDiceScore))

Average Dice score across all labels = 0.80793

Visualize statistics about the Dice indices across all the label classes as a box chart. The middle blue
line in the plot shows the median Dice index. The upper and lower bounds of the blue box indicate the
25th and 75th percentiles, respectively. Black whiskers extend to the most extreme data points that
are not outliers.

figure
boxchart(diceResult)
title("Dice Accuracy")
xticklabels("All Label Classes")
ylabel("Dice Coefficient")
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Supporting Functions

The niftiReader helper function reads a NIfTI file in a datastore.

function data = niftiReader(filename)
    data = niftiread(filename);
    data = uint8(data);
end
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Related Examples
• “Segment Lungs from CT Scan Using Pretrained Neural Network” on page 6-14
• “Breast Tumor Segmentation from Ultrasound Using Deep Learning” on page 6-32
• “3-D Brain Tumor Segmentation Using Deep Learning”
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Breast Tumor Segmentation from Ultrasound Using Deep
Learning

This example shows how to perform semantic segmentation of breast tumors from 2-D ultrasound
images using a deep neural network.

Semantic segmentation involves assigning a class to each pixel in a 2-D image. In this example, you
perform breast tumor segmentation using the DeepLab v3+ architecture. A common challenge of
medical image segmentation is class imbalance. In segmentation, class imbalance means the size of
the region of interest, such as a tumor, is small relative to the image background, resulting in many
more pixels in the background class. This example addresses class imbalance by using a custom
Tversky loss [1 on page 6-39]. The Tversky loss is an asymmetric similarity measure that is a
generalization of the Dice index and the Jaccard index.

Load Pretrained Network

Create a folder in which to store the pretrained network and image data set. In this example, a folder
named BreastSegmentation created within the tempdir directory has been used as dataDir.
Download the pretrained DeepLab v3+ network and test image by using the
downloadTrainedNetwork helper function. The helper function is attached to this example as a
supporting file. You can use the pretrained network to run the example without waiting for training to
complete.

dataDir = fullfile(tempdir,"BreastSegmentation");
if ~exist(dataDir,"dir")   
    mkdir(dataDir)
end
pretrainedNetwork_url = "https://www.mathworks.com/supportfiles/"+ ...
    "image/data/breastTumorDeepLabV3.tar.gz";
downloadTrainedNetwork(pretrainedNetwork_url,dataDir);

Unzip the TAR GZ file completely. Load the pretrained network into a variable called trainedNet.

gunzip(fullfile(dataDir,"breastTumorDeepLabV3.tar.gz"),dataDir);
untar(fullfile(dataDir,"breastTumorDeepLabV3.tar"),dataDir);
exampleDir = fullfile(dataDir,"breastTumorDeepLabV3");
load(fullfile(exampleDir,"breast_seg_deepLabV3.mat"));

Read the test ultrasound image and resize the image to the input size of the pretrained network.

imTest = imread(fullfile(exampleDir,"breastUltrasoundImg.png"));
imSize = [256 256];
imTest = imresize(imTest,imSize);

Predict the tumor segmentation mask for the test image.

segmentedImg = semanticseg(imTest,trainedNet);

Display the test image and the test image with the predicted tumor label overlay as a montage.

overlayImg = labeloverlay(imTest,segmentedImg,Transparency=0.7,IncludedLabels="tumor", ...
    Colormap="hsv");
montage({imTest,overlayImg});
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Download Data Set

This example uses the Breast Ultrasound Images (BUSI) data set [2 on page 6-39]. The BUSI data
set contains 2-D ultrasound images stored in the PNG file format. The total size of the data set is 197
MB. The data set contains 133 normal scans, 487 scans with benign tumors, and 210 scans with
malignant tumors. This example uses images from the tumor groups only. Each ultrasound image has
a corresponding tumor mask image. The tumor mask labels have been reviewed by clinical
radiologists [2 on page 6-39].

Run this code to download the dataset from the MathWorks® website and unzip the downloaded
folder.

zipFile = matlab.internal.examples.downloadSupportFile("image","data/Dataset_BUSI.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)

The imageDir folder contains the downloaded and unzipped dataset.

imageDir = fullfile(filepath,"Dataset_BUSI_with_GT");

Load Data

Create an imageDatastore object to read and manage the ultrasound image data. Label each image
as normal, benign, or malignant according to the name of its folder.

imds = imageDatastore(imageDir,IncludeSubfolders=true,LabelSource="foldernames");

Remove files whose names contain "mask" to remove label images from the datastore. The image
datastore now contains only the grayscale ultrasound images.

imds = subset(imds,find(~contains(imds.Files,"mask")));
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Create a pixelLabelDatastore (Computer Vision Toolbox) object to store the labels.

classNames = ["tumor","background"];
labelIDs = [1 0];
numClasses = numel(classNames);
pxds = pixelLabelDatastore(imageDir,classNames,labelIDs,IncludeSubfolders=true);

Include only the subset of files whose names contain "_mask.png" in the datastore. The pixel label
datastore now contains only the tumor mask images.

pxds = subset(pxds,contains(pxds.Files,"_mask.png"));

Preview one image with a tumor mask overlay.

testImage = preview(imds);
mask = preview(pxds);
B = labeloverlay(testImage,mask,Transparency=0.7,IncludedLabels="tumor", ...
    Colormap="hsv");
imshow(B)
title("Labeled Test Ultrasound Image")
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Combine the image datastore and the pixel label datastore to create a CombinedDatastore object.

dsCombined = combine(imds,pxds);

Prepare Data for Training

Partition Data into Training, Validation, and Test Sets

Split the combined datastore into data sets for training, validation, and testing. Allocate 80% of the
data for training, 10% for validation, and the remaining 10% for testing. Determine the indices to
include in each set by using the splitlabels (Computer Vision Toolbox) function. To exclude
images in the normal class without tumor images, use the image datastore labels as input and set
the Exclude name-value argument to "normal".

idxSet = splitlabels(imds.Labels,[0.8,0.1],"randomized",Exclude="normal");
dsTrain = subset(dsCombined,idxSet{1});
dsVal = subset(dsCombined,idxSet{2});
dsTest = subset(dsCombined,idxSet{3});

Augment Training and Validation Data

Augment the training and validation data by using the transform function with custom
preprocessing operations specified by the transformBreastTumorImageAndLabels helper
function. The helper function is attached to the example as a supporting file. The
transformBreastTumorImageAndLabels function performs these operations:

1 Convert the ultrasound images from RGB to grayscale.
2 Augment the intensity of the grayscale images by using the jitterIntensity function.
3 Resize the images to 256-by-256 pixels.

tdsTrain = transform(dsTrain,@transformBreastTumorImageAndLabels,IncludeInfo=true);
tdsVal = transform(dsVal,@transformBreastTumorImageAndLabels,IncludeInfo=true);

Define Network Architecture

This example uses the DeepLab v3+ network. DeepLab v3+ consists of a series of convolution layers
with a skip connection, one maxpool layer, and one averagepool layer. The network also has a batch
normalization layer before each ReLU layer.

Create a DeepLab v3+ network based on ResNet-50 by using the using deeplabv3plusLayers
(Computer Vision Toolbox) function. Setting the base network as ResNet-50 requires the Deep
Learning Toolbox™ Model for ResNet-50 Network support package. If this support package is not
installed, then the function provides a download link.

Define the input size of the network as 256-by-256-by-3. Specify the number of classes as two for
background and tumor.

imageSize = [256 256 3];
lgraph = deeplabv3plusLayers(imageSize,numClasses,"resnet50");

Because the preprocessed ultrasound images are grayscale, replace the original input layer with a
256-by-256 input layer.

newInputLayer = imageInputLayer(imageSize(1:2),Name="newInputLayer");
lgraph = replaceLayer(lgraph,lgraph.Layers(1).Name,newInputLayer);
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Replace the first 2-D convolution layer with a new 2-D convolution layer to match the size of the new
input layer.

newConvLayer = convolution2dLayer([7 7],64,Stride=2,Padding=[3 3 3 3],Name="newConv1");
lgraph = replaceLayer(lgraph,lgraph.Layers(2).Name,newConvLayer);

To better segment smaller tumor regions and reduce the influence of larger background regions, use
a custom Tversky pixel classification layer. For more details about using a custom Tversky layer, see
“Define Custom Pixel Classification Layer with Tversky Loss” (Deep Learning Toolbox). Replace the
pixel classification layer with the Tversky pixel classification layer. The alpha and beta weighting
factors control the contribution of false positives and false negatives, respectively, to the loss
function. The alpha and beta values used in this example were selected using trial and error for the
target data set. Generally, specifying the beta value greater than the alpha value is useful for
training images with small objects and large background regions.

alpha = 0.01;
beta = 0.99;
pxLayer = tverskyPixelClassificationLayer("tverskyLoss",alpha,beta);
lgraph = replaceLayer(lgraph,"classification",pxLayer);

Alternatively, you can modify the DeepLab v3+ network by using the Deep Network Designer (Deep
Learning Toolbox) from Deep Learning Toolbox.

Use the Analyze tool in the Deep Network Designer (Deep Learning Toolbox) to analyze the DeepLab
v3+ network.

deepNetworkDesigner(lgraph)

Specify Training Options

Train the network using the adam optimization solver. Specify the hyperparameter settings using the
trainingOptions (Deep Learning Toolbox) function. Set the learning rate to 1e-3 over the span of
training. You can experiment with the mini-batch size based on your GPU memory. Batch
normalization layers are less effective for smaller values of the mini-batch size. Tune the initial
learning rate based on the mini-batch size.

options = trainingOptions("adam", ...
    ExecutionEnvironment="gpu", ...
    InitialLearnRate=1e-3, ...
    ValidationData=tdsVal, ...
    MaxEpochs=300, ...
    MiniBatchSize=16, ...
    VerboseFrequency=20, ...
    Plots="training-progress");

Train Network

To train the network, set the doTraining variable to true. Train the model using the
trainNetwork (Deep Learning Toolbox) function.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For more information, see “GPU Computing Requirements” (Parallel
Computing Toolbox). Training takes about four hours on a single-GPU system with an NVIDIA™ Titan
Xp GPU and can take longer depending on your GPU hardware.

doTraining = ;
if doTraining
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    [trainedNet,info] = trainNetwork(tdsTrain,lgraph,options);
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save("breastTumorDeepLabv3-"+modelDateTime+".mat","trainedNet");
end

Predict Using New Data

Preprocess Test Data

Prepare the test data by using the transform function with custom preprocessing operations
specified by the transformBreastTumorImageResize helper function. This helper function is
attached to the example as a supporting file. The transformBreastTumorImageResize function
converts images from RGB to grayscale and resizes the images to 256-by-256 pixels.

dsTest = transform(dsTest,@transformBreastTumorImageResize,IncludeInfo=true);

Segment Test Data

Use the trained network for semantic segmentation of the test data set.

pxdsResults = semanticseg(dsTest,trainedNet,Verbose=true);

Running semantic segmentation network
-------------------------------------
* Processed 65 images.

Evaluate Segmentation Accuracy

Evaluate the network-predicted segmentation results against the ground truth pixel label tumor
masks.

metrics = evaluateSemanticSegmentation(pxdsResults,dsTest,Verbose=true);

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 65 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

       0.97588          0.96236       0.86931      0.9565         0.57667  

Measure the segmentation accuracy using the evaluateBreastTumorDiceAccuracy helper
function. This helper function computes the Dice index between the predicted and ground truth
segmentations using the dice function. The helper function is attached to the example as a
supporting file.

[diceTumor,diceBackground,numTestImgs] = evaluateBreastTumorDiceAccuracy(pxdsResults,dsTest);

Calculate the average Dice index across the set of test images.

disp("Average Dice score of background across "+num2str(numTestImgs)+ ...
    " test images = "+num2str(mean(diceBackground)))

Average Dice score of background across 65 test images = 0.98581

 Breast Tumor Segmentation from Ultrasound Using Deep Learning

6-37



disp("Average Dice score of tumor across "+num2str(numTestImgs)+ ...
    " test images = "+num2str(mean(diceTumor)))

Average Dice score of tumor across 65 test images = 0.78588

disp("Median Dice score of tumor across "+num2str(numTestImgs)+ ...
    " test images = "+num2str(median(diceTumor)))

Median Dice score of tumor across 65 test images = 0.85888

Visualize statistics about the Dice scores as a box chart. The middle blue line in the plot shows the
median Dice index. The upper and lower bounds of the blue box indicate the 25th and 75th
percentiles, respectively. Black whiskers extend to the most extreme data points that are not outliers.

figure
boxchart([diceTumor diceBackground])
title("Test Set Dice Accuracy")
xticklabels(classNames)
ylabel("Dice Coefficient")
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Cardiac Left Ventricle Segmentation from Cine-MRI Images
Using U-Net Network

This example shows how to perform semantic segmentation of the left ventricle from 2-D cardiac MRI
images using U-Net.

Semantic segmentation associates each pixel in an image with a class label. Segmentation of cardiac
MRI images is useful for detecting abnormalities in heart structure and function. A common
challenge of medical image segmentation is class imbalance, meaning the region of interest is small
relative to the image background. Therefore, the training images contain many more background
pixels than labeled pixels, which can limit classification accuracy. In this example, you address class
imbalance by using a generalized Dice loss function [1 on page 6-51]. You also use the gradient-
weighted class activation mapping (Grad-CAM) deep learning explainability technique to determine
which regions of an image are important for the pixel classification decision.

This figure shows an example of a cine-MRI image before segmentation, the network-predicted
segmentation map, and the corresponding Grad-CAM map.

Load Pretrained Network

Download the pretrained U-Net network by using the downloadTrainedNetwork helper function.
The helper function is attached to this example as a supporting file. You can use this pretrained
network to run the example without training the network.

exampleDir = fullfile(tempdir,"cardiacMR");
if ~isfolder(exampleDir)   
    mkdir(exampleDir);
end

trainedNetworkURL = "https://ssd.mathworks.com/supportfiles" + ...
    "/medical/pretrainedLeftVentricleSegmentation.zip";
downloadTrainedNetwork(trainedNetworkURL,exampleDir);

Load the network.

data = load(fullfile(exampleDir,"pretrainedLeftVentricleSegmentationModel.mat"));
trainedNet = data.trainedNet;
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Perform Semantic Segmentation

Use the pretrained network to predict the left ventricle segmentation mask for a test image.

Download Data Set

This example uses a subset of the Sunnybrook Cardiac Data data set [2 on page 6-51,3 on page 6-
52]. The subset consists of 45 cine-MRI images and their corresponding ground truth label images.
The MRI images were acquired from multiple patients with various cardiac pathologies. The ground
truth label images were manually drawn by experts [2]. The MRI images are in the DICOM file format
and the label images are in the PNG file format. The total size of the subset of data is ~105 MB.

Download the data set from the MathWorks® website and unzip the downloaded folder.

zipFile = matlab.internal.examples.downloadSupportFile("medical","CardiacMRI.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)

The imageDir folder contains the downloaded and unzipped data set.

imageDir = fullfile(filepath,"Cardiac MRI");

Predict Left Ventricle Mask

Read an image from the data set and preprocess the image by using the preprocessImage on page
6-50 helper function, which is defined at the end of this example. The helper function resizes MRI
images to the input size of the network and converts them from grayscale to three-channel images.

testImg = dicomread(fullfile(imageDir,"images","SC-HF-I-01","SC-HF-I-01_rawdcm_099.dcm"));
trainingSize = [256 256 3];
data = preprocessImage(testImg,trainingSize);
testImg = data{1};

Predict the left ventricle segmentation mask for the test image using the pretrained network by using
the semanticseg (Computer Vision Toolbox) function.

segmentedImg = semanticseg(testImg,trainedNet);

Display the test image and an overlay with the predicted mask as a montage.

overlayImg = labeloverlay(mat2gray(testImg),segmentedImg, ...
    Transparency=0.7, ...
    IncludedLabels="LeftVentricle");
imshowpair(mat2gray(testImg),overlayImg,"montage");
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Prepare Data for Training

Create an imageDatastore object to read and manage the MRI images.

dataFolder = fullfile(imageDir,"images");
imds = imageDatastore(dataFolder,...
    IncludeSubfolders=true,...
    FileExtensions=".dcm",...
    ReadFcn=@dicomread);

Create a pixelLabelDatastore (Computer Vision Toolbox) object to read and manage the label
images.

labelFolder = fullfile(imageDir,"labels");
classNames = ["Background","LeftVentricle"];
pixIDs = [0,1];

pxds = pixelLabelDatastore(labelFolder,classNames,pixIDs,...
    IncludeSubfolders=true,...
    FileExtensions=".png");

Preprocess the data by using the transform function with custom operations specified by the
preprocessImage on page 6-50 helper function, which is defined at the end of this example. The
helper function resizes the MRI images to the input size of the network and converts them from
grayscale to three-channel images.

timds = transform(imds,@(img) preprocessImage(img,trainingSize));

Preprocess the label images by using the transform function with custom operations specified by
the preprocesslabels on page 6-51 helper function, which is defined at the end of this example.
The helper function resizes the label images to the input size of the network.

tpxds = transform(pxds,@(img) preprocessLabels(img,trainingSize));
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Combine the transformed image and pixel label datastores to create a CombinedDatastore object.

combinedDS = combine(timds,tpxds);

Partition Data for Training, Validation, and Testing

Split the combined datastore into data sets for training, validation, and testing. Allocate 75% of the
data for training, 5% for validation, and the remaining 20% for testing.

numImages = numel(imds.Files);
numTrain = round(0.75*numImages);
numVal = round(0.05*numImages);
numTest = round(0.2*numImages);

shuffledIndices = randperm(numImages);
dsTrain = subset(combinedDS,shuffledIndices(1:numTrain));
dsVal = subset(combinedDS,shuffledIndices(numTrain+1:numTrain+numVal));
dsTest = subset(combinedDS,shuffledIndices(numTrain+numVal+1:end));

Visualize the number of images in the training, validation, and testing subsets.

figure
bar([numTrain,numVal,numTest])
title("Partitioned Data Set")
xticklabels({"Training Set","Validation Set","Testing Set"})
ylabel("Number of Images")

Augment Training Data
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Augment the training data by using the transform function with custom operations specified by the
augmentDataForLVSegmentation on page 6-51 helper function, which is defined at the end of
this example. The helper function applies random rotations, translations, and reflections to the MRI
images and corresponding ground truth labels.

dsTrain = transform(dsTrain,@(data) augmentDataForLVSegmentation(data));

Measure Label Imbalance

To measure the distribution of class labels in the data set, use the countEachLabel function to
count the background pixels and the labeled ventricle pixels.

pixelLabelCount = countEachLabel(pxds)

pixelLabelCount=2×3 table
          Name           PixelCount    ImagePixelCount
    _________________    __________    _______________

    {'Background'   }    5.1901e+07      5.2756e+07   
    {'LeftVentricle'}    8.5594e+05      5.2756e+07   

Visualize the labels by class. The image contains many more background pixels than labeled ventricle
pixels. The label imbalance can bias the training of the network. You address this imbalance when you
design the network.

figure
bar(categorical(pixelLabelCount.Name),pixelLabelCount.PixelCount)
ylabel("Frequency")
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Define Network Architecture

This example uses a U-Net network for semantic segmentation. Create a U-Net network with an input
size of 256-by-256-by-3 that classifies pixels into two categories corresponding to the background and
left ventricle.

numClasses = length(classNames);
net = unetLayers(trainingSize,numClasses);

Replace the input network layer with an imageInputLayer (Deep Learning Toolbox) object that
normalizes image values between 0 and 1000 to the range [0, 1]. Values less than 0 are set to 0 and
values greater than 1000 are set to 1000.

inputlayer = imageInputLayer(trainingSize, ...
    Normalization="rescale-zero-one", ...
    Min=0, ...
    Max=1000, ...
    Name="input");
net = replaceLayer(net,net.Layers(1).Name,inputlayer);

To address the class imbalance between the smaller ventricle regions and larger background, this
example uses a dicePixelClassificationLayer (Computer Vision Toolbox) object. Replace the
pixel classification layer with the Dice pixel classification layer.

pxLayer = dicePixelClassificationLayer(Name="labels");
net = replaceLayer(net,net.Layers(end).Name,pxLayer);
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Specify Training Options

Specify the training options by using the trainingOptions (Deep Learning Toolbox) function. Train
the network using the adam optimization solver. Set the learning rate to 0.001 over the span of
training. You can experiment with the mini-batch size based on your GPU memory. Batch
normalization layers are less effective for smaller values of the mini-batch size. Tune the initial
learning rate based on the mini-batch size.

options = trainingOptions("adam", ...
        InitialLearnRate=0.0002,...
        GradientDecayFactor=0.999,...
        L2Regularization=0.0005, ...
        MaxEpochs=100, ...
        MiniBatchSize=32, ...
        Shuffle="every-epoch", ...
        Verbose=false,...
        VerboseFrequency=100,...
        ValidationData=dsVal,...
        Plots="training-progress",...
        ExecutionEnvironment="auto",...
        ResetInputNormalization=false);

Train Network

To train the network, set the doTraining variable to true. Train the network by using the
trainNetwork (Deep Learning Toolbox) function.

Train on a GPU if one is available. Using a GPU requires a Parallel Computing Toolbox™ license and a
CUDA®-enabled NVIDIA® GPU.

doTraining = ;
if doTraining
    trainedNet = trainNetwork(dsTrain,net,options);
    modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
    save(fullfile(exampleDir,"trainedLeftVentricleSegmentation-" ...
        +modelDateTime+".mat"),"trainedNet");

end

Test Network

Segment each image in the test data set by using the trained network.

resultsDir = fullfile(exampleDir,"Results");

if ~isfolder(resultsDir)
    mkdir(resultsDir)
end

pxdsResults = semanticseg(dsTest,trainedNet,...
    WriteLocation=resultsDir,...
    Verbose=true,...
    MiniBatchSize=1);

Running semantic segmentation network
-------------------------------------
* Processed 161 images.
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Evaluate Segmentation Metrics

Evaluate the network by calculating performance metrics using the
evaluateSemanticSegmentation (Computer Vision Toolbox) function. The function computes
metrics that compare the labels that the network predicts in pxdsResults to the ground truth labels
in pxdsTest.

pxdsTest = dsTest.UnderlyingDatastores{2};
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTest);

Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 161 images.
* Finalizing... Done.
* Data set metrics:

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore
    ______________    ____________    _______    ___________    ___________

       0.99829          0.97752       0.9539       0.99667        0.96747  

View the metrics by class by querying the ClassMetrics property of metrics.

metrics.ClassMetrics

ans=2×3 table
                     Accuracy      IoU      MeanBFScore
                     ________    _______    ___________

    Background       0.99907     0.99826        0.995  
    LeftVentricle    0.95598     0.90953      0.93994  

Evaluate Dice Score

Evaluate the segmentation accuracy by calculating the Dice score between the predicted and ground
truth label images. For each test image, calculate the Dice score for the background label and the
ventricle label by using the dice function.

reset(pxdsTest);
reset(pxdsResults);

diceScore = zeros(numTest,numClasses);
for idx = 1:numTest

    prediction = read(pxdsResults);
    groundTruth = read(pxdsTest);

    diceScore(idx,1) = dice(prediction{1}==classNames(1),groundTruth{1}==classNames(1));
    diceScore(idx,2) = dice(prediction{1}==classNames(2),groundTruth{1}==classNames(2));
end

Calculate the mean Dice score over all test images and report the mean values in a table.

meanDiceScore = mean(diceScore);
diceTable = array2table(meanDiceScore', ...
    VariableNames="Mean Dice Score", ...
    RowNames=classNames)
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diceTable=2×1 table
                     Mean Dice Score
                     _______________

    Background           0.99913    
    LeftVentricle         0.9282    

Visualize the Dice scores for each class as a box chart. The middle blue line in the plot shows the
median Dice score. The upper and lower bounds of the blue box indicate the 25th and 75th
percentiles, respectively. Black whiskers extend to the most extreme data points that are not outliers.

figure
boxchart(diceScore)
title("Test Set Dice Accuracy")
xticklabels(classNames)
ylabel("Dice Coefficient")

Explainability

By using explainability methods like Grad-CAM, you can see which areas of an input image the
network uses to make its pixel classifications. Use Grad-CAM to show which areas of a test MRI
image the network uses to segment the left ventricle.

Load an image from the test data set and preprocess it using the same operations you use to
preprocess the training data. The preprocessImage on page 6-50 helper function is defined at the
end of this example.
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testImg = dicomread(fullfile(imageDir,"images","SC-HF-I-01","SC-HF-I-01_rawdcm_099.dcm"));
data = preprocessImage(testImg,trainingSize);
testImg = data{1};

Load the corresponding ground truth label image and preprocess it using the same operations you
use to preprocess the training data. The preprocessLabels on page 6-51 function is defined at the
end of this example.

testGroundTruth = imread(fullfile(imageDir,"labels","SC-HF-I-01","SC-HF-I-01gtmask0099.png"));
data = preprocessLabels({testGroundTruth}, trainingSize);
testGroundTruth = data{1};

Segment the test image using the trained network.

prediction = semanticseg(testImg,trainedNet);

To use Grad-CAM, you must select a feature layer from which to extract the feature map and a
reduction layer from which to extract the output activations. Use analyzeNetwork (Deep Learning
Toolbox) to find the layers to use with Grad-CAM. In this example, you use the final ReLU layer as the
feature layer and the softmax layer as the reduction layer.

analyzeNetwork(trainedNet)
featureLayer = "Decoder-Stage-4-Conv-2";
reductionLayer = "Softmax-Layer";

Compute the Grad-CAM map for the test image by using the gradCAM (Deep Learning Toolbox)
function.

gradCAMMap = gradCAM(trainedNet,testImg,classNames,...
    ReductionLayer=reductionLayer,...
    FeatureLayer=featureLayer);

Visualize the test image, the ground truth labels, the network-predicted labels, and the Grad-CAM
map for the ventricle. As expected, the area within the ground truth ventricle mask contributes most
strongly to the network prediction of the ventricle label.

figure
tiledlayout(2,2)
nexttile
imshow(mat2gray(testImg))
title("Test Image")

nexttile
imshow(labeloverlay(mat2gray(testImg),testGroundTruth))
title("Ground Truth Label")

nexttile
imshow(labeloverlay(mat2gray(testImg),prediction,IncludedLabels="LeftVentricle"))
title("Network-Predicted Label")

nexttile
imshow(mat2gray(testImg))
hold on
imagesc(gradCAMMap(:,:,2),AlphaData=0.5)
title("GRAD-CAM Map")
colormap jet
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Supporting Functions

The preprocessImage helper function preprocesses the MRI images using these steps:

1 Resize the input image to the target size of the network.
2 Convert grayscale images to three channel images.
3 Return the preprocessed image in a cell array.

function out = preprocessImage(img,targetSize)
% Copyright 2023 The MathWorks, Inc.

    targetSize = targetSize(1:2);
    img = imresize(img,targetSize);

    if size(img,3) == 1
        img = repmat(img,[1 1 3]);
    end

    out = {img};

end

The preprocessLabels helper function preprocesses label images using these steps:
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1 Resize the input label image to the target size of the network. The function uses nearest neighbor
interpolation so that the output is a binary image without partial decimal values.

2 Return the preprocessed image in a cell array.

function out = preprocessLabels(labels, targetSize)
% Copyright 2023 The MathWorks, Inc.

    targetSize = targetSize(1:2);
    labels = imresize(labels{1},targetSize,"nearest");

    out = {labels};

end

The augmentDataForLVSegmentation helper function randomly applies these augmentations to
each input image and its corresponding label image. The function returns the output data in a cell
array.

• Random rotation between 0 to 180 degrees.
• Random translation along the x- and y-axes of -10 to 10 pixels.
• Random reflection to flip the image in the x-axis.

function out = augmentDataForLVSegmentation(data)
% Copyright 2023 The MathWorks, Inc.

    img = data{1};
    labels = data{2};
    inputSize = size(img,[1 2]);

    tform = randomAffine2d(...
        Rotation=[-5 5],...
        XTranslation=[-10 10],...
        YTranslation=[-10 10]);

    sameAsInput = affineOutputView(inputSize,tform,BoundsStyle="sameAsInput");
    img = imwarp(img,tform,"linear",OutputView=sameAsInput);
    labels = imwarp(labels,tform,"nearest",OutputView=sameAsInput);

    out = {img,labels};

end

References

[1] Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. “V-Net: Fully Convolutional Neural
Networks for Volumetric Medical Image Segmentation.” In 2016 Fourth International Conference on
3D Vision (3DV), 565–71. Stanford, CA, USA: IEEE, 2016. https://doi.org/10.1109/3DV.2016.79.

 Cardiac Left Ventricle Segmentation from Cine-MRI Images Using U-Net Network

6-51



[2] Radau, Perry, Yingli Lu, Kim Connelly, Gideon Paul, Alexander J Dick, and Graham A Wright.
“Evaluation Framework for Algorithms Segmenting Short Axis Cardiac MRI.” The MIDAS Journal,
July 9, 2009. https://doi.org/10.54294/g80ruo.

[3] “Sunnybrook Cardiac Data – Cardiac Atlas Project.” Accessed January 10, 2023. http://
www.cardiacatlas.org/studies/sunnybrook-cardiac-data/.

See Also
imageDatastore | pixelLabelDatastore | subset | combine | transform | unetLayers |
semanticseg | evaluateSemanticSegmentation | gradCAM

Related Examples
• “Segment Lungs from CT Scan Using Pretrained Neural Network” on page 6-14
• “Brain MRI Segmentation Using Pretrained 3-D U-Net Network” on page 6-24
• “Breast Tumor Segmentation from Ultrasound Using Deep Learning” on page 6-32
• “3-D Brain Tumor Segmentation Using Deep Learning”

More About
• “Datastores for Deep Learning” (Deep Learning Toolbox)
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